大数据期末大作业 数据挖掘, 爬虫相关,朴素贝叶斯分类器python 简介: 运用爬虫技术以及朴素贝叶斯分类对抓取的新闻进行分类, 分析每种新闻在网站中的占比 已定义的新闻类别: 财经 科技 汽车 房产 体育 娱乐 其他 1. 环境以及依赖 python环境 python==3.9 依赖的第三方库: jieba parseurl bs4 numpy 2. 使用模型 朴素贝叶斯分类器 实现:纯python实现 3. 数据来源 新闻共分7类,新闻信息在此采集: 1 财经 http://finance.qq.com/l/201108/scroll_17.htm 2 科技 http://tech.qq.com/l/201512/scroll_02.htm 3 汽车 http://auto.qq.com/l/201512/scrollnews_02_2.htm 4 房产 http://gd.qq.com/l/house/fcgdxw/more_7.htm 5 体育 http://sports.qq.com/l/201512/scrollnews_01_2.htm 6 娱乐 http
2024-06-24 14:11:55 1.47MB 数据挖掘 python 朴素贝叶斯分类器
1
软件: anaconda jupyter notebook 运行代码文件:naive bayes.ipynb python环境
2023-11-12 20:53:50 55.11MB 机器学习 python 数据集 朴素贝叶斯算法
1
这里的文件是: 1- load_data:从csv文件导入数据2- 可视化:打印特征分布的直方图。 在名为可视化的文件夹中的训练数据中的两个类。 3-estimate_:估计给定数据的模型4-classify_:根据模型和数据进行分类5-测试:使用 alpha=1:0.1:1000 测试 Naive 分类器并在可视化文件夹中打印一个名为 (accuracy 1-1000.pdf) 的图6- InspectTheModel:尝试衡量每个类的每个特征值的影响7-jointProb:计算给定一个类的两个给定特征值的联合概率8- 互信息:计算训练数据上的互信息以驱动最可能的依赖特征对。 9- testingBonus:使用候选特征对测试朴素分类器。 要运行演示,请运行testing.m,但是根据需要更改开始,步骤和结束!
2023-05-18 19:50:58 90KB matlab
1
实现朴素贝叶斯分类器算法基本功能,代码有注释,还包括一个垃圾邮件过滤的实例。另外我这次用的是python2.7版,如果用python3的可能需要根据提示修改几个语法(sorted函数的参数)。
2022-12-29 18:45:58 16KB Bayes 朴素贝叶斯 机器学习 python
1
通过iris.txt的训练,再利用test.txt进行测试
2022-12-09 21:26:23 6KB 机器学习 贝叶斯分类器
1
简介 朴素贝叶斯分类器是基于贝叶斯公式的概率分类器,是建立在独立性假设基础上的。   贝叶斯公式可以把求解后验概率的问题转化为求解先验概率的问题,一般情况下后验概率问题 难以求解。例如;一封邮件是垃圾邮件的概率。通过贝叶斯公式可以把这个难解的问题转化为;计算垃圾邮件们各种特征出现的概率以及垃圾邮件出现的概率。因此朴素贝叶斯可以通过对已经掌握的“经验”(数据)的学习来预测一个很有价值的分类结果。 引入独立性假设 分类器最终的输出;选择最大概率的分类作为预测结果。 Python实现 导入所需包 import numpy as np import pandas as pd import
2022-11-13 17:03:07 94KB bnb test 分类
1
C++编写的朴素贝叶斯分类器跟k-means聚类,用于学习机器学习,最好是在Linux上运行,可以运行
2022-10-11 00:00:26 5.55MB C++ 朴素贝叶斯 分类器 k-means
1
小时间序列在宏观经济领域普遍存在, 对小时间序列的分类预测也有着广泛的需求.由于小时间序列 蕴含的信息不充分, 有效地提高小时间序列分类预测的可靠性非常困难, 目前也缺少这方面的研究.针对这种情况, 在基于引入平滑 参数的高斯核函数估计属性边缘密度的基础上, 建立用于小时间序列分类预测的动态朴素贝叶斯分类器, 并给出平滑参数的同步和异步优化方法.实验 结果表明, 优化能够显著提高小时间序列分类预测的准确性.
1
四个机器学习实验,主要涉及简单的线性回归、朴素贝叶斯分类器、支持向量机、CNN做文本分类,内附实验指导书、讲解PPT、参考代码 1、实验讲解PPT 4份 实验一 线性回归模型实验指导 实验二 支持向量机模型实验指导 实验三 贝叶斯分类解决西瓜问题 实验四 基于tensorflow实现CNN文本分类 2、实验指导书 4份 实验一 线性回归实验指导书 实验二 支持向量机实验指导书 实验三 贝叶斯分类实验指导书 实验四 基于tensorflow实现cnn文本处理实验指导书 3、实验参考代码 4份 实验一 LinearRegression 实验二 SVM 实验三 bayes_classify_demo 实验四 cnn-text-classification-tf
2022-05-01 12:05:44 4.63MB 机器学习 线性回归 支持向量机 cnn
朴素贝叶斯数字分类器 基于平均像素亮度和标准偏差的手写数字0或1的朴素贝叶斯分类器 2020年9月 ASU MCS计划课程CSE 575的项目1-统计机器学习 使用的技术: Python,Numpy,Scipy
2022-04-18 20:33:56 129KB Python
1