今天给大家带来一个文本生成图像的案例。让大家都成为艺术家,自己电脑也能生成图片 ,该模型它能让数十亿人在几秒钟内创建出精美的艺术。 Stable Diffusion模型包括两个步骤: 前向扩散——通过逐渐扰动输入数据将数据映射到噪声。这是通过一个简单的随机过程正式实现的,该过程从数据样本开始,并使用简单的高斯扩散核迭代地生成噪声样本。此过程仅在训练期间使用,而不用于推理。 参数化反向——撤消前向扩散并执行迭代去噪。这个过程代表数据合成,并被训练通过将随机噪声转换为真实数据来生成数据。
2023-04-05 16:25:07 1.33MB 深度学习 图像生成
1
这是FID预训练好的模型,针对coco的文本生成图像定量指标训练好的模型 复现步骤请看:https://blog.csdn.net/air__Heaven/article/details/124751665 CUB-Bird的FID预训练好的模型,请看:https://download.csdn.net/download/air__Heaven/85362542
2022-12-05 11:28:49 30.57MB 文本生成图像 T2I FID GAN
本资源是文本生成图像的SSA-GAN模型复现过程中必备的鸟数据集元处理数据包。包括test、text、train、example_filenames.txt、example_captions.txt、captions.pickle等数据。
2022-07-24 21:05:34 6.19MB 文本生成图像 T2I SSAGAN GAN
1
SSAGAN预训练的 DAMSM 模型,包括文本编码器text encoder和图像编码器image encoder,其中text encoder是双向LSTM模型,image encoder是CNN模型。在文件中均已经预训练好了的第200轮。 下载后将其上传到 DAMSMencoders目录下并进行解压
2022-07-24 21:05:32 87.15MB 文本生成图像 T2I gan LSTM
1
本资源是文本生成图像的DF-GAN模型复现过程中必备的元处理数据包,包括DAMSMencoder的imageencoder和textencoder,FID评估使用的npz,class_info.pickle文件、filenames.pickle文件。 复现步骤请查看:https://blog.csdn.net/air__Heaven/article/details/125467190
2022-06-28 19:07:21 126.33MB 文本生成图像 GAN 生成对抗网络 DFGAN
本压缩包是文本生成图像里的 R分数实验代码 R-precision评估指标定量工程文件,可以用来评估文本与图像的对齐性(即生成的图像是否符合文本),工程包括build_RPdata.py、config.py、encoder.py、eval_Rprecision.py、all_texts.txt。 运行时: 1.先更改参数,将文件位置改成你已经生成好的图像的位置 2.运行build_RPdata.py,生成RPdata的数据,即每个数据是一个图像+n条句子 3.运行eval_Rprecision.py,评估图像与文本的对齐度 4.还可以更改R值,继续3进行各种实验
2022-06-13 09:06:47 1.33MB 文本生成图像 R-precision
这是FID预训练好的模型,针对CUB-birds的文本生成图像定量指标训练好的模型 FID分数用于根据预训练网络提取的特征,测量真实图像分布和生成图像分布之间的距离。真实图像在空间中是服从一个分布的(假设为正态分布),而GAN生成的特征也是一个分布,GAN做的事情就是不断训练使这两个分布尽可能的相同。FID就是计算这两个分布直接的距离,使用的距离算法叫做Frechet distance。
2022-05-13 17:06:48 30.67MB 文档资料 自然语言处理 人工智能 nlp
这个是已经训练好的DFGAN,针对CUB的生成器模型,训练轮数601轮 默认bird.yml: CONFIG_NAME: 'bird' DATASET_NAME: 'bird' DATA_DIR: '../data/bird' GPU_ID: 0 WORKERS: 1 B_VALIDATION: True # True # False loss: 'hinge' TREE: BRANCH_NUM: 1 BASE_SIZE: 256 TRAIN: NF: 32 # default 64 BATCH_SIZE: 24 MAX_EPOCH: 601 NET_G: '../test' TEXT: EMBEDDING_DIM: 256 CAPTIONS_PER_IMAGE: 10 DAMSM_NAME: '../DAMSMencoders/bird/inception/text_encoder200.pth'
2022-05-12 16:06:21 46.75MB GAN 生成器 深度学习 文本生成图像
预训练好的inception model 是StackGAN 用来于鸟评估的inception score模型 也可以用于AttnGAN、DF-GAN等等文本生成图像模型当中 主要用于评估图像质量
2022-05-12 12:05:15 345.43MB 文档资料 文本生成图像 深度学习 GAN
已经配置好了预训练模型和训练好的模型 已经配置好了下载为鸟类预处理的元数据 除了没有CUB-birds的图像数据集,其他文件都已经下载并配置好了。 AttnGAN: Fine-Grained TexttoImage Generation with Attention(带有注意的生成对抗网络细化文本到图像生成)的代码复现 下载后需要安装环境 >pip install python-dateutil > pip install easydict > pip install pandas > pip install torchfile nltk > pip install scikit-image 可能需要额外安装的环境,根据提示进行补充: > pip install torchvision
2022-04-06 03:11:56 232.57MB GAN t2i 文本生成图像