变压器绕组的热点温度过高,会导致变压器绝缘脆解、裂化甚至击穿短路。因此及时、准确地预测出变压器绕组的热点温度,对提高变压器运行的安全可靠性至关重要。利用最小二乘双支持向量回归机(LSTSVR)作为边缘计算模型,将变压器油中气体色谱分析数据信息与变压器负载电流、环境温度、顶层油温、上死角温度等变压器运行信息结合,构建监测系统架构,预测变压器的平均油温,并计算出绕组热点温度。将所提方法得到的数据与实测数据进行对比,结果利用LSTSVR模型实现了变压器平均油温及绕组热点温度的准确预测,且该模型的预测精度优于最小二乘支持向量回归机模型,有效地提高了绕组热点温度测量的精度。现场实例也证明了所提方法的有效性和可靠性。
1
为了进一步提高多组分气体分析的准确度,对采用AOTF-NIR光谱仪采集甲烷、乙烷和丙烷多组分混合气体的近红外光谱数据建立了新的分析模型。首先对光谱数据采用偏最小二乘法(以下简称PLS)进行特征提取,随后将提取得到的潜变量作为支持向量回归机(以下简称SVR)的输入建立多组分混合气体的定量分析模型。结果显示,PLS特征提取耦合SVR对近红外光谱的定量分析取得了很好的分析效果。
1
为了使数据集的内在分布更好地影响训练模型, 提出一种密度加权孪生支持向量回归机算法. 该算法通过?? 近邻算法计算获得每个数据点基于数据密度分布的密度加权值, 并将密度加权值引入到标准孪生支持向量回归机算法中. 算法能够很好地反映训练数据集的内在分布, 使数据点准确影响训练模型. 通过6 个UCI 数据集上的实验结果分析验证了所提出算法的有效性.
2021-12-30 09:42:24 148KB 密度加权|?? 近邻法|内在分布
1
为更好发现数据中的复杂规律, 避免核函数选择的盲目性和局部最优等非线性优化问题, 本文提出一种基于改进灰狼算法优化多核支持向量回归机算法. 首先, 基于全局核函数和局部核函数构建多核支持向量机采油速度预测模型; 其次, 利用基于云模型和二次插值算法改进灰狼优化算法对核函数权值和参数的选取进行优化; 最后, 应用灰色关联分析理论确定采油速度影响因素集, 并作为多核支持向量回归机预测模型的输入. 与6种采油速度预测方法进行对比, 所提方法具有较好的全局寻优能力和较高的预测率的优点.
1
参数的优化选择对支持向量回归机的预测精度和泛化能力影响显著, 鉴于此, 提出一种多智能体粒子群算法(MAPSO) 寻优其参数的方法, 并建立MAPSO支持向量回归模型, 用于非线性系统的模型预测控制, 推导出最优控制率. 采用该算法对非线性系统进行仿真, 并与基于粒子群算法、基于遗传算法优化支持向量回归机的模型预测控制方法和RBF 神经网络的预测控制方法进行比较, 结果表明, 所提出的算法具有更好的控制性能, 可以有效应用于非线性系统控制中.
1
机器学习主要是用来分析处理数据,挖掘数据背后所潜在的相关信息. 大数 据时代,如何准确快速地挖掘信息背后的关系已成为热点. 支持向量机是由 Vapnik 等人提出的一项用于数据挖掘的新技术,主要用于模式识别、回归分析等 方面. 支持向量机的优点在于算法具有稀疏性,运算结果只受一部分样本的影 响,抗干扰能力强. 此外,通过加入正则项,支持向量机还能防止了“过拟合”.
2021-11-16 12:53:23 1.75MB jiqixuexi
1
支持向量回归机及其应用研究_田英杰》,matlab中文论坛faruto版主推荐的一篇文献,帮助理解SVM。
2021-10-20 17:06:24 2.47MB 支持向量机 SVM 田英杰
1
支持向量回归机(讲述如何将SVM从分类应用到到回归中去)
2021-10-18 16:00:37 482KB SVM 支持向量机
1
为了准确预测铣刀在加工过程中的磨损量,提出一种基于粒子群算法的支持向量回归机的优化算法用于对铣刀 磨损量的建模与预测。通过粒子群算法,优化输入不同维度的特征向量的支持向量回归机的建模,得到特征向量维度的最 优解和对应的支持向量回归机训练参数,建立了铣刀磨损量的预测模型。通过随机选取的真实样本,验证了该模型的准 确性。
2021-04-28 10:04:04 930KB jiqixuexi
1
详细了解支持向量机额的算法原理,进而明白SVR与SVM的区别,
2021-03-15 09:41:17 73KB SVR,回归
1