在Delphi编程环境中,开发人员有时需要在程序执行过程中插入短暂的延时,以便实现某种等待效果或避免过于频繁的操作。传统的Windows API函数`Sleep()`常用于此目的,但使用`Sleep()`会阻塞应用程序的消息循环,导致界面无响应,给人一种“死机”的感觉。为了克服这个问题,Delphi提供了其他延时函数,如`TThread.Sleep()`和异步回调等方法,这些方法可以在延迟执行的同时保持界面的响应性。 1. `TThread.Sleep()`:这是Delphi中推荐的延时函数,它是由VCL(Visual Component Library)提供的。`TThread`是Delphi中的线程类,`Sleep()`方法是其成员,它接受一个参数,单位为毫秒。与Windows API的`Sleep()`不同,`TThread.Sleep()`允许消息泵继续运行,因此不会阻塞用户界面的更新。例如: ```delphi uses Classes; procedure TForm1.Button1Click(Sender: TObject); begin TThread.Sleep(5000); // 延时5秒 // 在这之后的代码将在5秒后执行 end; ``` 2. 异步回调和Timer组件:另一种实现非阻塞延时的方法是使用异步回调或者Timer组件。例如,可以创建一个定时器,在指定时间间隔后触发事件,而不会影响主线程的消息处理。这样,用户界面可以保持活跃,同时程序能按照设定的时间进行操作: ```delphi uses Vcl.Timers; procedure TForm1.FormCreate(Sender: TObject); begin Timer1.Interval := 5000; // 设置5秒间隔 Timer1.OnTimer := Timer1Timer; // 设定回调函数 Timer1.Enabled := True; // 启动计时器 end; procedure TForm1.Timer1Timer(Sender: TObject); begin // 延时5秒后执行的代码 Timer1.Enabled := False; // 停止计时器,防止重复触发 // ... end; ``` 3. 使用异步编程库:如`System.Threading`单元,其中的`TTask`类提供了异步任务处理,也可以实现延时功能: ```delphi uses System.Threading; procedure TForm1.Button1Click(Sender: TObject); begin TTask.Run( procedure begin TThread.Sleep(5000); // 延时5秒后执行的代码 end); end; ``` 4. 自定义延时函数:如果你希望自定义一个延时函数,可以使用`TInterfacedObject`和`IDelayedAction`接口来创建一个异步延时服务,这样可以灵活地控制延时行为: ```delphi type IDelayedAction = interface ['{C98E73D1-627D-4A8F-BB5A-E2F95677829C}'] procedure Execute; end; procedure DelayExecute(const Action: IDelayedAction; DelayInMilliseconds: Cardinal); var Task: ITask; begin Task := TTask.Create(procedure var LAction: IDelayedAction; begin LAction := Action; TThread.Queue(nil, procedure begin LAction.Execute; end); end); Task.Start; TThread.Sleep(DelayInMilliseconds); end; // 使用自定义延时函数 var MyDelayedAction: IDelayedAction; begin MyDelayedAction := TMyDelayedAction.Create; try DelayExecute(MyDelayedAction, 5000); // 延时5秒 finally MyDelayedAction.Free; end; end; ``` Delphi提供了多种方法来实现非阻塞的延时,以确保用户界面的响应性。根据实际需求和项目规模,可以选择最适合的延时解决方案。
2024-10-10 20:51:45 171KB delphi延时 sleep sleep函数delphi 延时函数
1
STM32延时函数在嵌入式开发中扮演着至关重要的角色,特别是在实时性和精确性要求较高的应用中。本文将详细解析标题和描述中提到的毫秒延时和微秒延时实现方法,并探讨如何在STM32系统中有效地使用它们。 STM32是一款基于ARM Cortex-M内核的微控制器,广泛应用于工业、消费电子和个人开发项目。在这些应用中,精准的延时控制是必不可少的,例如在定时任务、通信协议、传感器采样等场景。 毫秒延时通常采用Systick定时器实现。Systick是Cortex-M系列处理器内置的一个系统定时器,它可以提供一个固定的时基,用于实现系统级的延时或周期性任务。在STM32中,我们可以配置Systick以1ms的周期产生中断,通过在中断服务程序中累加计数,当达到预设的毫秒数时,完成延时。具体步骤包括: 1. 初始化Systick,设置其时钟源和分频因子,使其每1ms产生一次中断。 2. 在Systick的中断服务程序中,增加一个全局变量表示已过的毫秒数。 3. 在需要延时的函数中,检查全局变量是否达到设定值,未达到则返回,达到则继续执行后续代码。 微秒延时则通常通过插入空指令(如__nop())来实现。__nop()是汇编指令,它执行时不进行任何操作,仅消耗CPU时钟周期。由于每个微控制器的时钟周期不同,所以要精确计算出多少个__nop()能产生所需的微秒延时,需要知道CPU的时钟速度。例如,如果CPU工作在72MHz,那么一个__nop()大约消耗14ns,1us需要72个__nop()。因此,编写微秒延时函数时,需要根据目标系统的时钟频率动态计算__nop()的数量。 为了提高延时精度,还可以结合系统时钟和循环计数来实现更精确的微秒延时。例如,可以先用一个固定数量的__nop()执行大部分延时,然后通过计数器计算剩余的微秒数。 在实际开发中,需要注意以下几点: 1. Systick作为系统定时器,可能会与其他系统功能冲突,如FreeRTOS的Tick定时器。合理配置Systick以避免影响其他系统服务。 2. 基于__nop()的微秒延时适用于较短的延时,对于较长的延时,可能因堆栈深度限制而无法实现。 3. 考虑到CPU负载和其他中断的影响,实际延时可能会与理论值有所偏差,因此在关键应用中需要进行校准。 通过理解和掌握这两种延时函数的实现原理,开发者可以更好地在STM32项目中实现精确的定时任务,提升系统性能和可靠性。在实际项目中,可以参考"01_延时函数"这样的资料,学习和实践这些延时技术。
2024-07-06 16:36:09 265KB stm32 delay 延时函数
1
51单片机的一些常用的延时函数,比较常用,希望大家参考
2024-03-02 21:11:27 10KB 延时函数
1
官方库延时函数误差太大,近2倍,在此基于嘀嗒定时器做了毫秒、微妙级别的两个延时函数。 1、可用在IO口模拟串口等要求时序操作的场景,如DHT11单总线、模拟I2C、SPI等。已经在温湿度传感器DHT11上做了测试。 2、例程中“time.c" 创建了 系统节拍模型,可用来实现 某些函数 每间隔一定时间运行1次 的功能。可实现 【时间片轮】模型的 单片机系统结构,执行效率高,避免阻塞延时
2023-03-12 23:10:49 1.97MB mcu 单片机 嵌入式硬件 延时函数
1
参考了51单片机 Keil C 延时程序的简单研究,自己也亲身测试和计算了一些已有的延时函数
2023-02-27 13:01:00 385KB C51 单片机 延时函数 文章
1
用于C单片机的延时,是学单片机延时的必备呀
2022-05-10 23:23:16 15KB C语言延时函数
1
这是一个常用的延时功能模块,编程有一 定的用处。
2022-05-10 23:21:17 600B delay
1
// Function : XSleep() // Purpose : To make the application sleep for the specified time // duration. // Duration the entire time duration XSleep sleeps, it // keeps processing the message pump, to ensure that all // messages are posted and that the calling thread does // not appear to block all threads!
2022-04-24 16:24:18 7KB XSleep
1
基于STM32滴答定时器的精确延时函数,分享给大家
2022-04-10 18:56:21 830B STM32 延时函数
1
Systick 主要的作用就是拿来计时,其原理和应用简述一下就是这样的:通过配置寄存器 SysTick->CTRL来设定Systick的计时频率并Enable使Systick开始计数,这里的 SysTick->CTRL&=0xfffffffb应该很好理解,把第2位设定为0,查找应用手册可以知道这是把Systick的计时频率设定为CPU主频(SYSCLK)的1/8。
2022-03-24 16:15:59 54KB STM32 延时函数 Systick 频率
1