在Android开发中,Launcher是用户接触最频繁的界面之一,它作为手机桌面,承载着应用图标、小部件等元素。为了提升用户体验,许多开发者会尝试模仿原生Launcher的某些特性,比如 Workspace 的左右滑动切换功能。这个功能使得用户可以方便地在不同的主屏幕之间进行切换,浏览和启动应用。本篇将详细介绍如何实现这一效果。 我们要理解 Workspace 是什么。在 Launcher 中,Workspace 是一系列可以左右滑动的屏幕,每个屏幕都包含了若干个桌面图标和小部件。用户可以通过手指左右滑动来浏览不同屏幕,找到他们需要的应用或操作。 实现 Workspace 左右滑动切换的核心技术主要包括两部分:手势检测和视图切换。 1. **手势检测**:Android 提供了 `GestureDetector` 类来处理用户的滑动手势。我们可以通过重写 `GestureDetector.SimpleOnGestureListener` 的 `onDown()`、`onScroll()` 和 `onFling()` 方法来捕获滑动事件。`onDown()` 捕获手指触摸屏幕的瞬间,`onScroll()` 处理手指在屏幕上移动的过程,`onFling()` 则用于识别快速滑动(fling)动作,这通常是用户想要快速切换 Workspace 的标志。 2. **视图切换**:当手势检测到滑动事件后,我们需要更新 Workspace 的显示。这通常涉及到对 ViewGroup(如 `LinearLayout` 或 `RelativeLayout`)的操作,通过改变子 View 的可见性或者调整其位置来模拟屏幕间的切换。例如,可以使用 `ViewGroup.getChildAt()` 获取当前显示的 Workspace,然后根据滑动方向调整其索引,使用 `ViewGroup.removeViewAt()`、`ViewGroup.addView()` 或 `ViewGroup.setChildFocus()` 进行视图的添加、删除和焦点转移。 在这个项目中,"FeelScrollLayout" 应该是一个自定义的布局组件,它扩展了 Android 的 `ViewGroup` 类,并实现了滑动切换的功能。可能包含以下关键部分: - **初始化**:在构造函数中设置初始的 Workspace 显示,并注册手势监听器。 - **滑动手势处理**:覆盖 `onTouchEvent()` 方法,将触控事件传递给 `GestureDetector` 进行处理。 - **视图动画**:为了提供更流畅的用户体验,可以使用 `ObjectAnimator` 或 `PropertyValuesHolder` 添加平滑的过渡动画,使屏幕切换看起来更加自然。 - **状态管理**:维护当前显示的 Workspace 索引,确保在滑动过程中不会出现错误的屏幕显示。 实际开发时,还需要考虑边缘滑动的效果,即在屏幕边缘滑动时能顺畅地切换到下一个或上一个 Workspace。此外,可能需要处理多点触控事件,防止在切换 Workspace 的同时误触发其他手势。 仿照 Launcher 的 Workspace 实现左右滑动切换是一项涉及手势检测、视图操作和动画设计的任务。通过自定义布局组件,我们可以实现类似原生 Launcher 的交互体验,为用户提供更为便捷的操作方式。
2024-10-28 16:41:28 1.26MB android 左右滑动
1
我们研究自发CP违规,以解决左右对称理论中的强CP问题。 离散的CP对称性由右手希格斯双峰的复数真空期望值破坏。 类似矢量的沉重夸克夸克与标准模型夸克混合,引入了已知的CP违规,从而实现了Nelson-Barr机制的一种变体。 QCD真空角在回路水平上消失。 讨论了紫外完全理论中小规模三阶化的实现。 我们进一步评论该模型的现象学和未来可测试性。
2024-07-14 18:52:14 231KB Open Access
1
在左-右孪生希格斯(LRTH)模型的框架中,我们考虑了最近一次在LHC上寻找高质子核共振的约束,并发现重中性玻色子ZH的质量低于2.76 TeV。 在这些约束下,我们研究了希格斯-格格勒耦合生产过程e + e-→ZH,e + e-→νeνe¯H和e + e-→e + e-H,上夸克汤河耦合生产过程e + e- →tt¯H,在e + e-对撞机上,希格斯自耦产生过程e + e-→ZHH和e + e-→νeνe¯HH。 此外,我们研究了希格斯玻色子的主要衰变模式,即h→ff′(f = b,c,τ),VV⁎(V = W,Z),gg,γγ。 我们发现LRTH效应相当大,因此e + e-对撞机上的希格斯玻色子过程可能是LRTH模型的敏感探针。
2024-07-03 14:52:48 719KB Open Access
1
在Android开发中,UI设计是至关重要的一环,而 DrawerLayout 是Android SDK提供的一种特殊布局,它主要用于实现类似原生Google应用中的侧滑菜单效果,即常说的“抽屉”效果。这种设计模式使得用户可以方便地从屏幕边缘滑出额外的功能或者导航选项,而不遮挡主要内容,提升了用户体验。下面我们将详细探讨 DrawerLayout 的使用方法和相关知识点。 首先,DrawerLayout 是一个可以容纳两个子视图的布局,其中一个视图作为主要内容,另一个视图作为抽屉。通常,抽屉视图位于屏幕的左侧或右侧,当用户从相应的边缘滑动时,抽屉会滑出显示。在描述中提到的实例中,抽屉效果是通过在主界面上方添加 DrawerLayout 并配置相应的滑动监听来实现的,这样当抽屉打开时,主界面的内容会跟随移动,但并不会被隐藏。 使用 DrawerLayout 需要以下步骤: 1. **在布局文件中添加 DrawerLayout**:在XML布局文件中,使用 `` 标签作为根元素,并包含两个子视图,一个作为主内容视图,另一个作为抽屉视图。 2. **设置主内容视图**:主内容视图通常是一个 `FrameLayout` 或 `LinearLayout`,用于放置应用的主要内容。例如,可以将一个 `Fragment` 添加到 `DrawerLayout` 中的 `content_frame` 布局。 3. **创建抽屉视图**:抽屉视图通常是一个 `NavigationView` 或自定义的布局,包含菜单项或其他功能。在抽屉视图中,可以通过 `android:layout_gravity` 属性设置其在屏幕的左侧("start")或右侧("end")。 4. **滑动监听器**:为了响应用户的滑动操作,需要添加 `OnDrawerSlideListener`、`OnDrawerOpenListener` 和 `OnDrawerCloseListener`。这些监听器可以帮助我们处理抽屉滑出、关闭等事件。 5. **打开和关闭抽屉**:可以通过 `DrawerLayout` 的 `openDrawer()` 和 `closeDrawer()` 方法手动控制抽屉的开关。 6. **设置抽屉指示器**:可以使用 `DrawerLayout` 的 `setDrawerIndicatorEnabled()` 方法来切换系统默认的抽屉指示器(通常是一个汉堡图标)。 在给定的实例中,"DrawMenu" 可能是指抽屉菜单的实现,可能包含了 XML 布局文件以及相关的菜单资源。导入源码后,开发者可以直接运行并查看效果,这对于学习和理解 DrawerLayout 的工作原理非常有帮助。 总结一下,DrawerLayout 是Android UI设计中的一个重要组件,用于实现左右抽屉效果,它可以增强应用的导航体验。通过合理的布局配置和监听事件处理,开发者可以轻松地为自己的应用添加这一功能。在这个实例中,开发者可以直观地看到如何使用 DrawerLayout 来创建一个左右抽屉效果,并从中学习到相关知识。
2024-07-01 11:41:53 1.41MB android UI
1
商家广告牌数据集,一共4G左右,分开上传,需要的可自行下载
2024-06-17 15:27:46 836.34MB 数据集
1
在最近的一篇论文中,我们提出了一种在最小左右对称模型的背景下测试中微子质量的跷跷板起源的系统方法。 该程序的本质是利用轻子数来抵消双电荷标量(位于基于希格斯机制的跷跷板的核心)的衰变,以探测狄拉克中微子质量项,而狄拉克中微子项又直接进入许多物理过程 包括右手中微子向W玻色子的衰变和左手带电的轻子。 在这个较长的版本中,我们将详细讨论这些过程和相关过程,并提供一些缺少的技术细节。 我们还仔细分析了保平汤川部门的物理吸引力的可能性,表明中微子狄拉克质量矩阵可以解析为轻,重中微子质量和混合的函数,而无需借助任何其他离散对称性。 跷跷板机制可以完全解开。 当平价确实打破时,我们表明,在一般情况下,仅狄拉克质量项的厄米部分是独立的,这大大简化了实验性地测试中微子质量起源的任务。 我们通过一些允许简单分析表达式的物理示例来说明该程序。 我们的工作表明,最小左右对称模型是一个独立的中微子质量理论,原则上可以在大型强子对撞机或下一个强子对撞机上进行测试。
2024-03-01 20:31:51 250KB Open Access
1
我们在左右对称理论中讨论风味的对称性。 我们证明,与通常考虑的情况相比,此类框架在建立风味对称模型方面具有不同的环境。 这不仅涉及服从扩大的量规结构的需要,而且还涉及关于残余对称性的更微妙的问题。 此外,如果离散的左右对称是电荷共轭,则应注意风味和电荷共轭对称之间的潜在不一致。 在基于A4的预测模型中,我们分析了最小中微子质量,大气混合角和Dirac CP相之间的相关性,后者更倾向于位于最大值附近。 希格斯(Higgs)双人连体衣不违反轻质风味。
2024-03-01 19:56:21 1.33MB Open Access
1
很有用的东西,两个android ui经常要用到的组件,一个是左右划屏,一个是多点触控放大缩小图片
2024-01-13 10:29:20 4KB java android
1
我们基于量规组SU(3)c×SU(2)L×SU(2)R×U(1)BL研究SUSY左右对称模型的变体。 除了夸克和轻子超场以外,我们仅引入第二个希格斯二重态来产生逼真的费米子质量矩阵。 该模型不包括任何SU(2)R三胞胎。 我们在低能量的单环水平上计算软SUSY参数的重归一化组演化。 我们发现SU(2)R瘦子双峰在低能下获得负质量的平方,因此SU(2)R×U(1)BL→U(1)Y的破坏是通过非零真空实现的 右手中微子的期望值。 通过将中微子与高庚子混合而产生小的中微子质量。 SU(2)R×U(1)BL扇区的质量极限是通过LHC的直接搜索结果以及LEP精度数据中的轻子-高更混合边界获得的。
2024-01-12 16:55:36 261KB Open Access
1
CPU用赛扬D 352 只要400块了 主板么用abit gd8-pro 好超又实惠 而且做工好 显卡么就用7300GS
2024-01-09 13:48:19 23KB
1