在遥感领域,数据集是研究和开发的关键资源,它们为模型训练、验证和测试提供了必要的数据。"高光谱和LiDAR多模态遥感图像分类数据集"是这样一种专门针对遥感图像处理的宝贵资源,它结合了两种不同类型的数据——高光谱图像和LiDAR(Light Detection and Ranging)数据,以实现更精确的图像分类。 高光谱图像,也称为光谱成像,是一种捕捉和记录物体反射或发射的光谱信息的技术。这种技术能够提供数百个连续的光谱波段,每个波段对应一个窄的电磁谱段。通过分析这些波段,我们可以获取物体的详细化学和物理特性,例如植被健康、土壤类型、水体污染等,这对环境监测、城市规划、农业管理等有着重要的应用。 LiDAR则是一种主动遥感技术,它通过向地面发射激光脉冲并测量回波时间来计算目标的距离。LiDAR数据可以生成高精度的地形模型,包括地表特征如建筑物、树木和地形起伏。此外,LiDAR还能穿透植被,揭示地表覆盖下的特征,如地基和地下结构。 这个数据集包含了三个不同的地区:Houston2013、Trento和MUUFL。每个地区可能对应不同的地理环境和应用场景,这为研究者提供了多样性的数据,以便他们在不同条件和场景下测试和比较分类算法的效果。 数据集的分类任务通常涉及识别图像中的各种地物类别,如建筑、水体、植被、道路等。多模态数据结合可以显著提升分类的准确性,因为高光谱数据提供了丰富的光谱信息,而LiDAR数据则提供了高度精确的空间信息。将这两者结合起来,可以形成一个强大的特征空间,帮助区分相似的地物类别,减少分类错误。 在实际应用中,这个数据集可以用于训练深度学习或机器学习模型,比如卷积神经网络(CNN)。通过在这样的多模态数据上训练,模型能够学习到如何综合解析光谱和空间信息,从而提高对遥感图像的分类能力。对于研究人员和开发者来说,这个数据集提供了理想的平台,用于开发新的图像分析技术,改进现有算法,并推动遥感图像处理领域的创新。 "高光谱和LiDAR多模态遥感图像分类数据集"是一个涵盖了多种地理环境和两种互补遥感技术的宝贵资源,对于理解地物特性、提升遥感图像分类精度以及推动遥感技术的发展具有重大价值。通过深入研究和利用这个数据集,我们可以期待在未来实现更加智能化和精确化的地球表面监测。
2024-10-09 21:43:16 185.02MB 数据集
1
智能音箱行业简报 智能音箱是新一代的人机交互入口,结合了人工智能、语音识别和自然语言处理等关键技术,集成了播放网络音乐、查询各类信息、进行语音娱乐互动甚至控制智能家电等多种功能。智能音箱通过与人类自然对话的方式,使得用户与数字世界之间的交互更加智能便捷。 人工智能技术是智能音箱的核心,内置强大的人工智能助手,如 Amazon Echo 的 Alexa、苹果的 Siri 和 Google Home 的 Google 助手,这些助手能够理解和解释用户的语音指令,提供个性化的建议、推荐和服务。它们通过学习用户的喜好和行为模式,能够不断提供更准确、个性化的回应。 语音识别技术是智能音箱的关键,智能音箱通过麦克风阵列接收用户的语音指令,并利用语音识别技术将其转换为可理解的文本。这使得用户能够通过语音与智能音箱进行交互,无需使用其他输入设备。语音识别技术的发展使得智能音箱能够更准确地识别和解析用户的语音指令,提高了交互的便捷性和自然性。 自然语言处理技术涉及语法、词义、语境等方面的分析和理解,使智能音箱能够更好地理解用户的意图并作出准确的响应。它们能够解析用户的指令、问题和对话,并转化为机器可以理解的形式,从而实现智能音箱与用户之间的无缝对话和交流。 智能音箱在家庭生活中提供了许多便利和娱乐功能。用户可以通过语音指令控制智能家居设备,如灯光、温度、安全系统等。智能音箱还可以播放音乐、讲故事、提供烹饪食谱、提醒日程安排等。 在媒体和娱乐领域,智能音箱作为音频播放器和媒体中心,用户可以通过语音指令请求播放音乐、电台、播客和其他媒体内容。它们与流媒体服务提供商(如 Spotify、Apple Music、Pandora 等)集成,使用户能够随时访问和播放各种音频内容。 在信息查询和助手领域,智能音箱通过互联网连接,提供实时的信息和服务。用户可以通过语音指令查询天气预报、新闻报道、股票行情、交通情况等。智能音箱还可以回答各种问题,提供实用的知识和建议。 在健康和健身领域,智能音箱可以提供健康建议、健身指导、播放运动音乐、计算卡路里消耗等。一些智能音箱还具备监测健康数据、睡眠追踪和健康提醒的功能。 在教育和学习领域,智能音箱可以成为教育和学习的辅助工具。它们可以回答学生的问题、提供课程内容、播放教育音频等。智能音箱还可以与学习应用程序和在线学习平台进行集成,提供个性化的学习体验。 在商业和办公场所,智能音箱可以用作会议室的语音助手,提供日程安排、会议提醒和会议记录等功能。智能音箱还可以用于客户服务、预订服务、语音导航等场景。 智能音箱也可以与可穿戴设备(如智能手表、智能眼镜等)进行集成,提供更便捷的交互方式。用户可以通过智能音箱控制和操作可穿戴设备,并获取相关信息和功能。 智能音箱的发展历程可以分为三个阶段。第一个阶段是从 2014 年开始的,亚马逊推出了 Echo 音箱,内置的 Alexa 虚拟助手为用户提供了音乐播放、新闻、天气、计时器等基本功能,同时还可以通过技能库接入第三方服务。这是智能音箱的第一代产品,它定义了一个全新的产品类别。 第二个阶段是 Google 和苹果的加入。在亚马逊成功之后,Google 和苹果也加入了智能音箱的市场。2016 年,Google 推出了 Google Home,内置 Google Assistant,而在 2017 年,苹果也推出了自己的 HomePod,内置 Siri。 第三个阶段是中国市场的兴起。从 2015 年开始,中国的智能音箱市场也开始兴起。阿里巴巴、小米和百度等科技巨头纷纷推出了自己的智能音箱产品。这些产品除了基本的音乐播放、新闻、天气预报等功能,还加入了更多针对中国市场的本地化服务,例如菜谱推荐、电影票预订、在线购物等。 智能音箱的发展趋势包括多模态交互和智能家居控制。近几年,智能音箱不仅仅是一个音乐播放设备,更多的是作为智能家居的中心控制器,通过语音控制其他的智能家居设备,如智能灯泡、智能插座等。同时,一些音箱如亚马逊的 Echo Show,还具备了视觉交互功能,用户可以通过屏幕查看信息和控制设备。 智能音箱是人工智能、语音识别和自然语言处理等技术的结合体,提供了多种功能和服务,改变了人们的生活方式和工作方式。
2024-09-04 09:45:49 1.7MB 人工智能
1
Havard-Medical-Image-Fusion-Datasets-main 官网:https://www.med.harvard.edu/aanlib/home.html,里面包含MRI、CT、PET医学图像,下载需要手动一张一张操作。 在朋友的告知下,有人在Github整理出了代码,我下载下来方便各位下载。 Github下载链接:https://github.com/yidamyth/Havard-Medical-Image-Fusion-Datasets
2024-07-16 11:20:17 54.34MB 数据集
1
在使用深度学习模型研究遥感影像地物分类问题时,某些地物的遥感影像可用于训练的样本很少。同时,多样化的遥感影像获取方式产生了大量不同空间分辨率的多模态遥感影像。融合这些多模态遥感影像,弥补样本量少导致分类精度低的缺陷,是小样本的遥感影像高精度分类领域中亟待解决的问题。针对上述问题,提出了考虑两种空间分辨率遥感影像相关关系的融合分类方法。首先,使用两个并行的深度学习网络分别提取两种空间分辨率影像的高层特征;其次,将提取到的高层特征通过融合方法进行融合;最后,得到融合后的高层特征作为输入,训练整个融合分类模型。实验表明,不同融合策略的分类精度不同,本文提出的基于高层特征级别的融合策略可以有效提高分类精度。
2024-07-01 16:53:28 3.2MB 图像处理 深度学习
1
"多模态特征融合的遥感图像语义分割网络" 本文介绍了一种多模态特征融合的遥感图像语义分割网络,称为MMFNet。该网络能够融合 IRRG(Infrared、Red、Green)图像和 DSM(Digital Surface Model)图像,提取融合后的特征,并使用残差解码块(Residual Decoding Block, RDB)和复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块提取跳跃连接的多尺度特征。 MMFNet 网络的架构主要包含以下几个部分: 1. 编码器:使用双输入流的方式同时提取 IRRG 图像的光谱特征和 DSM 图像的高度特征。 2. 解码器:使用残差解码块(Residual Decoding Block, RDB)提取融合后的特征,并使用密集连接的方式加强特征的传播和复用。 3. 复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块:提取跳跃连接的多尺度特征。 实验结果表明,MMFNet 网络在国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的 Vaihingen 和 Potsdam 数据集上取得了 90.44%和 90.70%的全局精确度,相比较与 DeepLabV3+、OCRNet 等通用分割网络和 CEVO、UFMG_4 等同数据集专用分割网络具有更高的分割精确度。 本文的贡献在于: 1. 提出了多模态特征融合的遥感图像语义分割网络,能够融合 IRRG 图像和 DSM 图像,提高了遥感图像语义分割的精确度。 2. 引入了残差解码块(Residual Decoding Block, RDB)和复合空洞空间金字塔(Complex Atrous Spatial Pyramid Pooling, CASPP)模块,提高了网络的表达能力和泛化能力。 本文提出了一个多模态特征融合的遥感图像语义分割网络,能够提高遥感图像语义分割的精确度和泛化能力,有助于国土资源规划、智慧城市等领域的应用。
2024-07-01 16:47:59 1.49MB
1
中文多模态医学大模型智能分析X光片,实现影像诊断,完成医生问诊多轮对话
2024-01-16 09:52:08 9.36MB 人工智能 知识图谱 NLP 计算机视觉
01 多模态网络&内生安全 第六届ISC大会
2024-01-09 08:15:20 8.06MB 内生安全 多模态网络
1
针对工业过程的非线性和多模态特征,提出了一种基于局部近邻标准化(local neighborhood standard ization,LNS)和主多项式分析(principal polynomial analysis,PPA)结合的故障检测算法。首先,将样本数据通过局部近邻标准化(local neighbor standardization,LNS)算法,对每个样本构建k近邻数据集;然后应用k近邻数据集的均值和方差对当前样本进行标准化处理;最后使用PPA对已经标准化处理后的样本建模,计算出T2和SPE统计量,并确定控制限进行故障检测。LNS算法能够去除数据中的多模态特征,而PPA算法能够有效的处理非线性数据,因此LNS-PPA方法能够提高具有多模态非线性特征的工业过程故障检测能力。将该方法应用于多模态非线性数值例子和田纳西伊斯曼(TE)化工过程,并将测试结果与主元分析法(principal component analysis,PCA)、主多项式分析法进行对比,其结果能够有效验证LNS-PPA的优越性。
1
这是用NEO4J平台构建一个《人工智能引论》课程的多模态知识图谱相关代码与文件。 知识图谱的经典定义是结构化的语义知识库,是用形象化的图形式来表达出物理世界中的概念以及内部关系。**其基本组成单位是“实体-关系-实体”三元组**,实体间通过关系相互连接形成知识结构网络。而它**也是基于图的数据结构,基本组成是“节点-边-节点”**,从而将知识信息连接成为一个关系网。所以知识图谱主要有**实体、关系、属性**等部分。其中实体表示的某种事物是独立于其他事物的,也是构建图谱最基本的元素;关系表示的是实体与实体之间的关系,用边连接着实体;而属性则用来阐述某一类实体的一些具体的值。这些三元组形式是知识图谱数据层最底层的形式。 图数据库是一种新型的非关系型数据库,无论是节点还是边缘,它的图表都**基于图论**。图论中的基本元素节点和边对应图数据库当中的节点与关系。图数据库的模型是包括**节点、关系以及属性**。它主要存储两类数据:节点和边。节点是实体:如人、成绩、书籍或其他具体事物。边关系:连接节点的概念、事件或事物。
2023-11-24 21:39:08 541KB 人工智能 课程资源 知识图谱 neo4j
1
多模态大模型综述】 使用 gpt3.5 精细翻译,完美融合图片等内容 由微软7位华人研究员撰写,足足119页 它从目前已经完善的和还处于最前沿的两类多模态大模型研究方向出发,全面总结了五个具体研究主题: - 视觉理解 - 视觉生成 - 统一视觉模型 - LLM加持的多模态大模型 - 多模态 agent 本报告一共7位作者。 发起人和整体负责人为 Chunyuan Li。 他是微软雷德蒙德首席研究员,博士毕业于杜克大学,最近研究兴趣为 CV 和 NLP 中的大规模预训练。 他负责了开头介绍和结尾总结以及“利用 LLM 训练的多模态大模型”这章的撰写。 核心作者一共 4位: Zhe Gan Zhengyuan Yang Jianwei Yang Linjie Li 他们分别负责了剩下四个主题章节的撰写。
2023-10-25 15:55:11 55.51MB 范文/模板/素材 microsoft 自然语言处理
1