基于改善大学生创业环境,更好激发大学生创业意愿,鼓励更多大学生想创业、能创业的目的,在研究文献、调研走访专家的基础上,以GEM模型为参考,构建了大学生创业环境指标体系,该体系包含资金环境、政策环境、市场环境、教育环境以及文化环境5个系统层,13个准则层,25个指标层。基于SPSS软件,分析体系设计需求,进行数据分析处理,验证大学生创业环境指标体系的合理性。结果证实该体系能够对大学生创业总体环境90%以上的变异进行解释,5个系统层能反映大学生创业总体环境情况。
2025-12-18 10:49:25 1.35MB SPSS软件 因子分析 回归分析
1
本文详细介绍了基于Python的回归预测模型构建及SHAP可视化解释的全过程。首先通过pandas和matplotlib等库加载和可视化数据分布,包括数值型和类别型特征的分布分析。接着使用递归特征消除(RFE)进行特征选择,并划分训练集和测试集。随后构建了线性回归、随机森林和XGBoost三种回归模型,并进行了模型训练和评估,比较了各模型的MSE、RMSE、R2等指标。最后重点展示了如何使用SHAP库对XGBoost模型进行可视化解释,包括特征重要性、依赖图、热力图等多种可视化方法,帮助理解模型预测结果和特征影响。 在数据科学领域中,Python语言因其强大的库支持和应用的广泛性成为了解决问题的重要工具。回归分析是一种统计学中用来预测和分析变量之间关系的方法,它通过建立数学模型来描述变量之间的依赖关系。在Python中,利用各种库来构建回归预测模型已经成为一项基础技能。 在构建回归模型的过程中,数据的预处理是不可或缺的一步。使用pandas库可以方便地加载和处理数据集,而matplotlib库则提供了强大的数据可视化功能,使得数据分析师能够直观地观察到数据的分布情况。数据分布的可视化有助于识别数据中的趋势、异常值以及潜在的数据问题,比如数值型和类别型特征的分布分析,这对于后续的特征选择和模型建立有着至关重要的作用。 特征选择是提高模型性能的重要环节,通过递归特征消除(RFE)方法,可以从原始特征中筛选出最具预测力的特征,这一步骤有利于简化模型,减少过拟合的风险。同时,划分训练集和测试集是评估模型泛化能力的关键步骤,训练集用于模型学习,测试集用于检验模型在未知数据上的表现。 在构建回归模型时,线性回归、随机森林和XGBoost是三种常见的模型选择。线性回归模型简洁直观,适用于数据特征和目标变量之间呈现线性关系的情况。随机森林模型作为一种集成学习方法,它通过构建多棵决策树来提高预测的准确性和鲁棒性。XGBoost模型则是一种优化的分布式梯度提升库,它在处理大规模数据时表现优异,且具有出色的预测准确率和速度。 模型训练和评估是机器学习流程中的关键环节,通过比较不同模型的均方误差(MSE)、均方根误差(RMSE)和决定系数(R²)等指标,可以定量地评估模型的性能。这些指标反映了模型预测值与实际值之间的差异,其中MSE和RMSE越小表示模型预测误差越小,而R²值越接近1表示模型的解释力越强。 SHAP(SHapley Additive exPlanations)是一种基于博弈论的Shapley值来解释机器学习模型预测的工具。通过使用SHAP库,数据分析师可以深入了解模型的预测结果,包括各个特征对模型预测的具体贡献度。SHAP提供了多种可视化方法,例如特征重要性图、依赖图和热力图等,这些图示方法直观地展示了特征与预测值之间的关系,帮助分析师理解和解释模型预测背后的逻辑。 随着数据科学的不断进步,Python在这一领域中的应用愈发成熟。基于Python的回归预测模型和SHAP可视化解释为数据分析师提供了一套完善的工具集,使得机器学习模型的构建和解释更加高效和直观。这些技术和工具的普及,不仅加深了对数据的理解,也为行业解决方案的创新提供了坚实的基础。
2025-12-08 15:12:03 12.28MB Python 机器学习 数据可视化 回归分析
1
基于Transformer的Matlab代码:数据回归与多场景预测工具箱,适用于单、多变量时序预测与回归分析,Transformer回归 Matlab代码 基于Transformer的数据回归预测(可以更为分类 单、多变量时序预测 回归,前私我),Matlab代码,可直接运行,适合小白新手 程序已经调试好,无需更改代码替数据集即可运行数据格式为excel Transformer 作为一种创新的神经网络结构,深受欢迎。 采用 Transformer 编码器对光伏、负荷数据特征间的复杂关系以及时间序列中的长短期依赖关系进行挖掘,可以提高光伏功率、负荷预测的准确性。 1、运行环境要求MATLAB版本为2023b及其以上 2、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要 3、代码中文注释清晰,质量极高 4、测试数据集,可以直接运行源程序。 替你的数据即可用 适合新手小白 ,Transformer回归; Matlab代码; 无需更改代码; 数据集替换; 创新神经网络; 时间序列; 长短期依赖关系挖掘; R2; MAE; MSE; 评估指标。,基于Transfor
2025-11-29 14:17:23 1.42MB ajax
1
基于Transformer的Matlab代码:数据回归与多场景预测工具箱,Transformer在数据回归分析中的应用——基于Matlab代码的实战教学,Transformer回归 Matlab代码 基于Transformer的数据回归预测(可以更为分类 单、多变量时序预测 回归,前私我),Matlab代码,可直接运行,适合小白新手 程序已经调试好,无需更改代码替数据集即可运行数据格式为excel Transformer 作为一种创新的神经网络结构,深受欢迎。 采用 Transformer 编码器对光伏、负荷数据特征间的复杂关系以及时间序列中的长短期依赖关系进行挖掘,可以提高光伏功率、负荷预测的准确性。 1、运行环境要求MATLAB版本为2023b及其以上 2、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要 3、代码中文注释清晰,质量极高 4、测试数据集,可以直接运行源程序。 替你的数据即可用 适合新手小白 ,Transformer回归; Matlab代码; 无需更改代码; 数据集替换; 创新神经网络; 时间序列; 长短期依赖关系挖掘; R2; MAE;
2025-11-29 14:16:45 7.26MB
1
随着信息技术的飞速发展,特别是在大数据时代的背景下,医学健康领域的研究正逐步融合计算机科学中的高级技术,如机器学习、数据分析、深度学习以及数据可视化等。这些技术的引入极大地提升了对疾病预测、模型训练、特征工程、回归分析等方面的研究能力和效率。本压缩包文件名为“医学健康-机器学习-数据分析-深度学习-数据可视化-疾病预测-模型训练-特征工程-回归分析-决策树-随机森林-数据清洗-标准化处理-图表生成-预测报告-防控措施-医疗机构-公共健康.zip”,它涵盖了医学健康研究中使用现代信息技术的关键环节和应用。 机器学习作为人工智能的一个分支,在医学健康领域的应用越来越广泛。机器学习模型能够从大量医疗数据中学习并预测疾病的发生概率、病程发展趋势等,为临床决策提供参考。其中,决策树和随机森林是两种常用的机器学习模型,它们通过模拟数据的决策逻辑来分类和预测,决策树通过构建树形结构进行决策过程的可视化,而随机森林则是由多个决策树组成的集成学习方法,能有效地提高预测精度和防止过拟合。 数据分析和深度学习是处理和分析复杂医学数据的有力工具。在数据分析的过程中,数据清洗和标准化处理是两个不可或缺的步骤。数据清洗主要是去除数据中的噪声和无关数据,而标准化处理则确保数据具有统一的格式和量纲,有助于提升后续模型训练的准确性和效率。深度学习通过模拟人脑神经网络结构,可以处理更加复杂和高维的数据集,特别适用于医学影像分析、基因序列分析等高度复杂的数据处理场景。 在疾病预测和防控措施方面,数据可视化技术的应用使得复杂的医学数据变得更加直观易懂,这对于公共健康政策的制定、医疗资源配置以及个人健康风险评估都具有重要意义。同时,数据可视化也有助于医护人员更有效地理解和解释分析结果,提升临床决策质量。 此外,特征工程作为数据分析的重要环节,对提升模型预测能力起着至关重要的作用。通过选择和构造与预测任务最相关的特征,能够极大提升模型的预测准确性。回归分析作为统计学中的一种方法,在医学健康领域中用于研究变量之间的依赖关系,是了解疾病影响因素、评估治疗效果等研究的基础工具。 医疗机构作为直接参与疾病预防、治疗和康复的实体,在公共健康体系中扮演着核心角色。通过应用上述技术,医疗机构可以更加科学地制定防控措施,提高服务效率,同时也可以为患者提供更加个性化和精准的医疗方案。 本压缩包中的“附赠资源.docx”和“说明文件.txt”文档可能包含了上述技术的具体应用示例、操作指南以及相关的数据处理流程说明。而“disease-prediction-master”可能是与疾病预测相关的代码库、项目案例或者研究资料,为研究人员提供了实用的参考和学习材料。 本压缩包集合了医学健康领域与计算机科学交叉的多个关键技术和应用,为相关领域的研究者和从业者提供了一套完整的工具和资源。通过这些技术的应用,可以极大地推进医学健康领域的研究深度和广度,帮助人们更好地理解和应对健康风险,从而提高公共健康水平。
2025-11-09 16:08:03 21.78MB
1
内容概要:本文介绍了随机森林回归预测模型的工作机制及其构建流程,详细阐述了其背后的基础概念如自助采样、特征随机选择和节点分裂规则;接着解释了模型构造过程,包含数据准备阶段的数据收集、清洗、特征工程到生成多个独立决策树的具体方法;再讨论了模型集成过程即由单独决策树组成的'森林'怎样合作做出更加准确稳定的预测。最后探讨了用于评价模型性能的三个关键度量标准:均方误差(MSE)、平均绝对误差(MAE)和决定系数(R²)。此外还提及了一个具体的应用实例——电力负荷预测,在这个过程中,通过整合天气因素及其他相关信息源提升对未来电量消耗趋势的理解与把握。 适用人群:从事数据分析、机器学习相关领域的研究人员和技术从业者,以及希望深入理解随机森林这一强大工具内在运作逻辑的学习者。 使用场景及目标:当面对涉及复杂关系或者存在高度不确定性的情况下需要对连续数值结果作出高质量估计的任务;尤其适用于想要平衡精度与稳健性的项目。此外,文中提到的关于特征选择、数据预处理及评估技巧等内容也可作为一般性指导原则加以借鉴。 其他说明:为了使理论讲解更贴近实际应用场景,文章引用了电力行业中的电力负荷预测案例,不仅展示了如何运用随机森林算法解决现实问题的方法论,也为不同行业的从业者提供了启发性的思路。
2025-07-17 12:45:06 15KB 随机森林 回归分析 电力负荷预测
1
logistic回归分析PPT课件 Logistic回归分析是一种多变量分析方法,用于研究二分类或多分类观察结果与影响因素之间的关系。它是一种概率型非线性回归,常用于流行病学研究中分析疾病与各种危险因素间的定量关系。 Logistic回归的优点是可以控制混杂因素的影响,真实反映暴露因素与观察结果间的关系。在流行病学研究中,Logistic回归分析可以用于研究疾病与各种危险因素间的关系,例如研究吸烟与肺癌之间的关系。 Logistic回归的分类有二分类资料Logistic回归和多分类资料Logistic回归。二分类资料Logistic回归适用于因变量为两分类变量的资料,例如研究吸烟与肺癌之间的关系。多分类资料Logistic回归适用于因变量为多项分类的资料,例如研究吸烟、酒精消费与肝癌之间的关系。 Logistic回归分析的假设包括独立性、同方差性和线性关系。Logistic回归模型可以用来计算相对危险度(RR)和奇数比(OR),从而评价暴露因素对疾病的影响。 在流行病学研究中,Logistic回归分析可以与其他研究设计相结合,例如队列研究和病例对照研究。队列研究是研究暴露因素对疾病的影响的前瞻性研究,病例对照研究是研究疾病与暴露因素之间的关系的回顾性研究。 Logistic回归分析的应用非常广泛,例如在流行病学、社会学、心理学、医学等领域都有应用。它可以用于研究疾病的危险因素,评价暴露因素对疾病的影响,检测疾病的预测模型等。 在实际应用中,Logistic回归分析需要注意一些问题,例如选择合适的模型、处理缺失值、避免多重共线性等。同时,Logistic回归分析也需要结合具体的研究问题和研究设计来选择合适的模型和方法。 Logistic回归分析是一种非常有用的多变量分析方法,广泛应用于流行病学、社会学、心理学、医学等领域。它可以帮助研究人员研究疾病与暴露因素之间的关系,评价暴露因素对疾病的影响,检测疾病的预测模型等。
2025-06-03 09:54:51 993KB
1
在本压缩包中,我们主要探讨的是几种不同的预测方法,包括插值拟合、灰色预测、回归分析、马尔可夫预测以及神经网络预测,并且这些方法被应用于对中国人口增长的预测。以下是对这些概念的详细说明: 1. **插值拟合**:插值是一种数学方法,用于找到一组数据点之间的函数关系,使得该函数在每个数据点上的值与实际值相匹配。在实际应用中,插值拟合常用于填补数据空缺或者估算未知数据点的值。常见的插值方法有线性插值、多项式插值(如拉格朗日插值和牛顿插值)和样条插值。 2. **灰色预测**:灰色预测是由灰色系统理论发展出的一种预测技术。它假设系统部分信息是已知的,但存在不确定性,即“灰色”。灰色预测模型(GM模型)通常基于有限的历史数据构建,通过生成差分序列来揭示数据的内在规律,然后进行预测。这种方法特别适用于处理非线性、小样本和不完全信息的问题。 3. **回归分析**:回归分析是统计学中的一个重要工具,用于研究两个或多个变量之间的关系,特别是一个因变量和一个或多个自变量之间的关系。通过构建回归模型,可以预测未来因变量的值。常见的回归模型有线性回归、多元回归、逻辑回归等,它们在预测人口增长时,可能会考虑人口增长率、出生率、死亡率等因素。 4. **马尔可夫预测**:马尔可夫预测,也称为马尔可夫链模型,基于马尔可夫假设,即系统未来状态只依赖于当前状态,而与过去状态无关。这种模型常用于时间序列预测,例如人口迁移、天气预报等。在人口增长预测中,马尔可夫链可以用来分析人口状态(如年龄结构、性别比例)的转移概率。 5. **神经网络预测**:神经网络是模拟人脑神经元工作方式的计算模型,具有强大的学习和泛化能力。在预测领域,如人口增长,可以通过训练神经网络来学习历史人口数据的模式,然后用学习到的模型对未来人口进行预测。常见的神经网络模型有前馈神经网络、循环神经网络(RNN)、长短时记忆网络(LSTM)等。 这个压缩包中的程序源代码很可能是实现这些预测方法的实例,可以帮助我们理解并实践这些理论。通过对比不同预测方法的结果,我们可以评估哪种方法在预测中国人口增长上更准确、更有效。对于学习和研究数据分析及预测技术的人来说,这是一个非常有价值的资源。
2025-05-22 10:42:12 72.67MB
1
本资源摘要信息涵盖了基于SPSS软件与多元线性回归分析理论的分析儿童血液必需元素与血红蛋白浓度的相关关系的知识点。 1. 儿童血液必需元素的重要性:儿童血液中的必需元素,如铁、锌、铜、锰等,对儿童的生长发育和正常生理功能具有重要影响。 2. 多元线性回归分析理论:多元线性回归分析是一种常用的统计方法,用于探讨多个自变量对因变量的影响。在本研究中,使用SPSS软件进行多元线性回归分析,探讨儿童血液必需元素与血红蛋白浓度的相关关系。 3. 简单相关系数的计算:简单相关系数是一种衡量两个变量之间线性相关程度的统计指标。在本研究中,计算了儿童血液中铁、锌、铜、锰与血红蛋白浓度之间的简单相关系数,结果表明这些元素均存在一定程度的负相关关系。 4. 回归系数的计算:回归系数是一种衡量自变量对因变量的影响程度的统计指标。在本研究中,计算了铁、锌、铜、锰对血红蛋白浓度的回归系数,结果表明这些元素对血红蛋白浓度的影响是显著的。 5. 儿童血液必需元素与血红蛋白浓度的相关关系:本研究结果表明,儿童血液中的铁、锌、铜、锰与血红蛋白浓度存在密切的相关关系,这种关系可能通过两种途径实现:一方面,必需元素直接参与血红蛋白的合成,缺乏这些元素将直接影响血红蛋白的生成;另一方面,必需元素还参与其他生物过程,如能量代谢、免疫应答等,进而影响血红蛋白的浓度。 6.临床实践意义:本研究结果不仅揭示了儿童营养状况与血液生理指标之间的关系,也为临床实践中儿童营养补充提供了参考依据。 7.SPSS软件在医疗研究中的应用:SPSS软件是一种常用的统计分析软件,在医疗研究中广泛应用于数据分析和统计处理。本研究中,使用SPSS软件进行多元线性回归分析,探讨儿童血液必需元素与血红蛋白浓度的相关关系。 8.儿童营养状况与血液生理指标之间的关系:本研究结果表明,儿童血液中的必需元素与血红蛋白浓度存在密切的相关关系,这种关系可能通过两种途径实现:一方面,必需元素直接参与血红蛋白的合成,缺乏这些元素将直接影响血红蛋白的生成;另一方面,必需元素还参与其他生物过程,如能量代谢、免疫应答等,进而影响血红蛋白的浓度。
2025-05-21 21:28:27 637KB
1
基于TCN-Shap的时间序列预测与多变量回归分析:探索时间序列数据的预测与回归特性,支持自定义数据集的灵活应用,tcn-Shap时间序列预测或者多变量回归 是时间序列预测问题,也可以是回归问题,但不是分类问题 自带数据集,可以直接运行,也可以替成自己的数据集 ,TCN; Shap时间序列预测; 多变量回归; 时间序列预测问题; 回归问题; 自带数据集,"TCN-Shap在时间序列预测与多变量回归中的应用"
2025-04-06 08:11:08 364KB scss
1