针对移动边缘计算(MEC)提供IT服务环境和云计算能力带来的高带宽、低时延优势,结合LTE免授权频谱(LTE-U)技术,研究了车辆异构网络中基于 MEC 的任务卸载模式决策和资源分配问题。考虑链路差异化要求,即车辆到路边单元(V2I)链路的高容量和车辆到车辆(V2V)链路的高可靠性,将用户服务质量(QoS)建模为容量与时延的组合形式。首先采用改进的 K-means 算法依据不同的 QoS 对请求车辆进行聚类,从而确定通信模式,其次利用基于无竞争期(CFP)的LTE-U,结合载波聚合(CA)技术,使用分布式Q-Learning算法进行信道和功率分配。仿真结果表明,所提机制可以在保证V2V链路可靠性的同时,使得V2I遍历容量最大化。
1