针对煤矿井下胶带输送机驱动系统效率低且维护成本高,钢结构部件易锈蚀,胶带自重大、在运输系统中占用负荷大等不足情况,进行了驱动系统、钢结构防腐工艺、新型胶带材料技术研究应用。采用永磁同步电动机通过联轴器直接驱动胶带输送机机,钢结构部件采用热浸锌防腐工艺进行防腐、防锈处理,研制了芳纶胶带取代传统PVG、钢丝绳芯胶带。结果证明:永磁直驱实现了驱动零维护,免除了驱动设备维修维护投入,浸锌钢结构部件有效延长使用寿命,芳纶胶带采用DPP结构,具有拉伸强度大、伸长率低、带体薄、抗撕裂、运行稳定等特点,可有效降低带体自重,降低运输能耗,提高运行效率,延长胶带使用寿命。通过这些措施,提高了设备传动效率,延长了钢结构部件使用寿命,降低胶带运输能耗,提高运行效率,取得了良好的节能、降耗效益。
2024-02-25 15:05:51 154KB 行业研究
1
Matlab Simulink#直驱永磁风电机组并网仿真模型 基于永磁直驱式风机并网仿真模型。 采用背靠背双PWM变流器,先整流,再逆变。 不仅实现电机侧的有功、无功功率的解耦控制和转速调节,而且能实现直流侧电压控制并稳定直流电压和网侧变换器有功、无功功率的解耦控制。 风速控制可以有线性变风速,或者恒定风速运行,对风力机进行建模仿真。 机侧变流器采用转速外环,电流内环的双闭环控制,实现无静差跟踪。 后级并网逆变器采用母线电压外环,并网电流内环控制,实现有功并网。 并网电流畸变率在2%左右。 附图仅部分波形图,可根据自己需求出图。 可用于自用仿真学习,附带对应的详细说明及控制策略实现的paper,便于理解学习。 模型完整无错,可塑性高,可根据自己的需求进行修改使用。 包含仿真文件和说明 根据你提供的内容,我重新表述如下: 这是一个基于Matlab/Simulink的仿真模型,用于直驱永磁风电机组并网。模型采用背靠背双PWM变流器,先进行整流,再进行逆变。通过该模型,不仅可以实现电机侧有功和无功功率的解耦控制、转速调节,还能实现直流侧电压的控制,稳定直流电压,并实现网侧变换器有功和无功
2024-01-10 15:01:50 1.15MB matlab
1
为了解决矿井带式输送机重载启动困难、无法对皮带运行速度进行调控、传动效率低、维护费用高等问题,设计了一种大功率大扭矩的永磁同步直驱变频一体机,提出将变频器、控制开关、永磁同步电机集成在体积较小的防爆机壳中的结构方案,实现电机直接驱动设备,重载软启,节能降耗。同时还设计了合理的水冷系统,进行了电磁设计,利用ANSYS有限元分析及仿真,验证其可行性。实践证明,该一体机具有效率高,稳定性好,维护成本低等特点。
2024-01-10 10:56:12 1.57MB 行业研究
1
大族电机产品线直驱电机zip,大族电机产品线直驱电机,直线电机,平板直线电缸,技术参数及尺寸图。
2023-10-04 09:03:45 13.22MB 产品样本
1
煤矿带式输送机一般采用异步电动机,该电动机驱动系统在使用过程中存在效率低、能量损失大等问题。对此,大同煤矿集团塔山煤矿运输一队通过调查研究确定以永磁直驱系统取代了异步电动机思路,并根据永磁直驱同步电动机工作原理、优点、使用中存在问题,提出了解决办法,确保永磁直驱同步电动机安全高效运行。
2023-04-19 10:48:12 115KB 行业研究
1
simulink仿真,直驱型风力发电机最大功率点追踪
2023-02-17 11:43:35 85KB simulink matlab 风电
1
基于PMSG的风力发电机并网仿真simulink模型,主要用于学习永磁直驱风机的基本工作原理,自己可以在模型的基础上进行拓展,将其变为自己的知识。
1
基于1.5MW PMSG永磁直驱风机建模仿真,可以借鉴仿真中的建模方法,因为对风机的控制关键在于熟悉风机的工作原理,所以在对该仿真模型理解的基础上就可以引发自己的深度思考,加强对风机的理解。
1
隔爆型笼式异步电动机系统驱动胶带输送机驱动效率低、启动不平稳、重载启动困难、故障率高、噪音大,榆次北山煤业有限公司通过技术、经济比较,选用了矿用隔爆型永磁直驱变频调速装置,即无齿轮永磁同步电动机和变频器的组合,该装置结构简单、体积小、重量轻,投入运行以来损耗大大减少、效率明显提高、启动转矩提高至额定转矩的2.0倍,实现了对皮带输送机的无齿永磁同步变频驱动,有效解决了异步电动机驱动系统存在的问题,是目前煤矿井下皮带输送机驱动系统的首选产品,必将得到进一步的推广应用。
1
直驱永磁电机以其转矩大、波动小、效率高和结构紧凑等优越性能,取代了传统伺服电机和减速器联合使用的驱动模式,成为机器人驱动系统的核心部件之一。根据工业机器人的运行工况和实际要求,设计了一台直驱高速并联机器人的27槽24极外转子永磁电机,分析该电机主要结构参数的选取,建立该电机的二维有限元仿真模型。在空载状态下,计算气隙磁密分布,分析空载反电势及其谐波含量和齿槽转矩;在额定转矩和最大转矩的工作状态下,对电磁转矩、效率、功率因数和力能指标等电机性能进行对比分析。仿真结果表明,该电机的性能指标误差均在6. 5%以内,验证了电机设计的合理性和实用性,可为电机参数的进一步优化设计提供依据,也可为机器人驱动系统的优化提供参考。
1