这个项目使用热门的目标检测算法yolov5算法,实现了对于戴口罩和不戴口罩的人脸识别需求,项目运行之后展示一个由qt技术编写的主界面窗口,项目可以实现图片和视频的检测。图片检测需要上传图片,系统会自动识别出图片中的人是否佩戴口罩。视频检测中包括实时监测和文件检测,实时监测可以通过摄像头直接识别出未佩戴口罩的人。在机器学习技术中,要想使得所训练的模型具有较高的准确度,其中一个关键就是要有足够量的数据让它进行一轮又一轮的学习,不断提取特征,分析,学习。在这个项目中,数据集文件夹为yolo_mask,数据集文件夹下分两个文件夹 images和labels,这两个文件夹分别存储图片数据和图片标签数据文件,这两个文件夹都分别下分test,train,val文件夹,分别表示测试集,训练集,验证集和其标注文件。在这个项目中,我们选用了2000张图片数据,其中训练集,测试集,验证集按照6:2:2的比例分配数据。将这些图片数据分别存储在,然后使用图形图像注释工具LabelImg对这2000张图片数据进行标注,标注完成之后会得到一系列的txt文件,这里的txt文件就是目标检测的标注文件。
1