粒子群算法(PSO)优化xgboost的分类预测,多输入单输出模型。PSO-xgboost分类预测模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-01-27 19:27:15 54MB
1
xgboost分类以及回归预测代码实例,内涵实例代码及数据
2022-06-12 21:05:31 545KB xgboost 分类 回归
PySpark-ClusterClassify 使用AWS Sagemaker在MNIST数据集上进行分布式KMeans聚类和XGBoost分类作业
2022-04-03 16:34:56 671KB JupyterNotebook
1
乳腺癌检测应用 使用机器学习XGBoost分类器的乳腺癌检测应用程序
2021-12-31 09:32:00 1.93MB HTML
1
行人检测在人工智能系统、车辆辅助驾驶系统和智能监控等领域具有重要的应用,是当前的研究热点.针对HOG特征不明显、支持向量机(SVM)分类器计算复杂度高,导致识别率低和检测速度慢的问题,本文提出了一种改进的基于增强型HOG的行人检测算法.该算法首先预处理原始图像并提取其HOG特征,然后增强该特征生成增强型HOG,经XGBoost分类器进行行人检测.在INRIA数据集上进行测试,实验结果表明所提算法识别率高达95.49%,有效地提高了行人检测性能.
1
XGBoost 分类模型的Python实现-附件资源
2021-10-14 21:16:24 106B
1
XGBoost 分类模型的Python实现-附件资源
2021-03-06 19:16:07 23B
1