python基于LSTM神经网络进行时间序列数据预测源码+全部数据.zip包含数据清洗,数据特征提取,数据建模,数据预测使用LSTM神经网络进行时间序列数据预测分析。基于Tensorflow框架、Kerase接口开发网络模型。 .LSTM单变量2 1.观测值缩放 2.时间序列转换成稳定数据 3.时间序列转监督学习数据 1_3.LSTM单变量3 1.LSTM模型开发 1_4.LSTM单变量4 1.完整的LSTM案例 1_5.LSTM单变量5 1.更健壮的LSTM案例 2.LSTM多变量(air_pollution) 1_1.LSTM多变量1 1.数据输出 2.预处理 1_2.LSTM多变量2 1.LSTM数据预处理 1_3.LSTM多变量3 1.定义&训练模型 2.数据预处理 3.Multi-Step LSTM预测(shampoo-sales) 1_1.Multi-Step LSTM预测1 1.静态模型预测 1_2.Multi-Step LSTM预测2 1.多步预测的LSTM网络 二
利用Python,使用Arima模型对时间序列进行建模预测,结果中包含原始数据、建模全部代码以及预测结果可视化。
1
SARIMA(p,d,q)(P,D,Q,s) 季节性自回归移动平均模型,结构参数有七个 AR(p) 自回归模型,即用自己回归自己。基本假设是,当前序列值取决于序列的历史值。p 表示用多少个历史值来回归出预测值。 要确定初始 p,需要查看PACF图并找到最大的显著时滞,在 p 之后其它时滞都不显著。 MA(q) 移动平均模型,是对时间序列的误差进行建模,并假设当前误差取决于带有滞后的误差。可以在ACF图上找到初始值。 结合以上两种方法:AR(p)+MA(q)=ARMA(p,q)AR(p)+MA(q)=ARMA(p,q)AR(p)+MA(q)=ARMA(p,q),就是自回归移动平均模型 剩下的参数
2022-04-18 18:26:42 39KB python 时间序列
1
主要介绍了详解用Python进行时间序列预测的7种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2021-12-27 19:14:11 726KB Python 时间序列预测 Python 时间序列
1
文章目录prophet 安装数据集下载prophet 实战导入包pandas 读取 csv 数据画个图拆分数据集从日期中拆分特征使用 prophet 训练和预测prophet 学到了什么放大图 prophet 安装 prophet 是facebook 开源的一款时间序列预测工具包,直接用 conda 安装 fbprophet 即可 prophet 的官网:https://facebook.github.io/prophet/ prophet 中文意思是“先知” prophet 的输入一般具有两列:ds和y ds(datestamp) 列应为 Pandas 可以识别的日期格式,日期应为YYYY-
2021-09-15 11:13:39 965KB date op plot
1
灰色预测模型适合小样本时间序列预测。
2021-03-12 20:39:37 6KB 灰色预测 python 时间序列预测
1