该课题为基于MATLAB的人体动作识别,读取测试图片,提取前景,框定目标,根据长宽比例判别。
识别人体行为。如行走,端坐,卧躺等。matlab实现。
1
MATLAB人体姿态识别[卡尔曼,GUI,行走+站立+伸腰,定位,质心],在数字图像预处理部分采用了图像二值化,腐蚀与膨胀等几种方法为人体目标的跟踪和检测做准备。为了克服在实际操作中遇到的问题,采用了帧差法和ViBe算法,帧差法即利用帧间变化与当前帧、背景算法来判断它是否大于阈值,并分析视频中序列的运动特性,ViBe算法则是一种背景建模的方法,背景模型是由邻域像素来创建,并对比背景模型、当前输入像素值检测出前景,确定视频中的目标跟踪。在人体行为识别中,运动目标最小长宽比以及连续帧间的加速度来判断人体行为是否异常,如果检测到异常的行为比如说摔倒、快跑等行为,在识别的过程这种实时监测。
1
第1章 绪论 1.1 研究背景 对于目标实施追踪一直是人们追求的目标,以前只能通过人为的或者其他信息进行模糊的追踪。20世纪初,数字图像的处理走入大众的视野。在那个时候,人们在两地之间传输了一张照片,该照片经过数字压缩后,传输时间从200多小时缩短到不足三小时。这一过程虽然用到了图像处理方面的相关知识,但计算机却没有参与到整个过程中。但是,数字图像的处理离不开一定的储存空间与计算技巧的配合,与计算机发展技术成正比关系[1]。 从20世纪50年代开始,计算机的发展才向前迈进了一大步,人们在处理图形以及图像信息时已经有意识的将计算机的功能利用起来,增加工作的便利性[2]。 从图像处理技术的兴起到
1