Apache Flink 案例集(2022 版) Apache Flink 作为流处理领域的领军角色和事实标准,已经逐步演进为流计算核心能力的领军角色。在数据集成方面,Apache Flink 提供了 Flink CDC 组件,使用 CDC 技术从各种数据库中获取变更流并接入到 Flink 中。Flink CDC 可以替代传统的 DataX 和 Canal 工具做实时数据同步,将数据库的全量和增量数据同步到消息队列和数据仓库中。 在数据分析和数据仓库领域,Apache Flink 扮演着重要的角色。Flink 的批流一体技术被越来越多的公司所采纳,社区也持续推出 Flink Table Store 等新技术进一步精简流式数仓(实时离线一体化)的架构,推动数据仓库从 Lambda 架构到 Kappa 架构的演进和落地,大大降低企业建立实时化数据分析平台的人力和硬件资源成本。 此外,Apache Flink 也广泛应用于推荐、广告和搜索等机器学习业务场景中。借助流批一体技术的演进和升级,Flink 社区推出了新一代机器学习基础框架 Flink ML 2.0,能够将数据清洗、数据预处理、特征计算、样本拼接和模型训练完全串联,形成一套高效的、大数据 AI 一体化的计算流程,同时可以兼容业界成熟的深度学习算法、嵌入 Tensorflow、PyTorch 等主流的深度学习算法库,支持全链路的深度学习流程。 Apache Flink 的成功案例涵盖了数据集成、数据分析(BI)、人工智能(AI)、云原生以及企业数字化转型等多个应用场景,其中既包含传统和新兴的互联网公司,也包含通信、证券、银行等传统企业。 在实践中,Apache Flink 被广泛应用于众安保险、奇安信、工商银行、中信建投、美团、伴鱼、Bilibili 等公司,解决实际生产问题,实现实时化平台搭建和业务转型。 Apache Flink 的未来发展前景广阔,期待在下一年的专刊中看到更多用户的反馈和分享。
2025-06-24 11:54:24 20.23MB apache flink
1
《Flink实战:案例源码与数据集解析》 Apache Flink是一款强大的开源流处理框架,它在实时数据处理领域有着广泛的应用。本资源“Flink案例源码和数据集.rar”提供了丰富的学习材料,包括实际操作的源代码以及配套的数据集,帮助我们深入理解Flink的工作原理和实践应用。 一、Flink核心概念与特性 Flink的核心概念主要包括流(Stream)、作业(Job)和算子(Operator)。流分为两种类型:无界流(Unbounded Stream)和有界流(Bounded Stream),无界流代表无限的数据流,有界流则表示有限的数据集合。Flink的作业是由多个算子组成的计算图,每个算子处理输入流并生成新的输出流。Flink的特性包括事件时间处理、状态管理、容错机制以及低延迟等。 二、Flink数据处理模型 Flink的处理模型基于数据流模型,分为DataStream API和Table & SQL API。DataStream API适合处理原始的无结构或半结构化的数据流,而Table & SQL API提供了一种声明式的方式来处理数据,更接近于传统的SQL查询。 三、案例源码解析 1. 数据读取与写入:源码中可能包含了如何使用Flink从各种数据源(如Kafka、HDFS、RabbitMQ等)读取数据,并将结果写入到不同的存储系统(如HBase、Cassandra或文件系统)。 2. 数据转换与过滤:通过源码可以了解Flink如何进行数据转换,如Map、Filter、KeyBy、Join等操作,以及如何实现自定义的转换函数。 3. 窗口操作:Flink支持滑动窗口、会话窗口和 tumbling 窗口等多种窗口操作,源码中可能会展示如何根据业务需求设置窗口并进行窗口聚合。 4. 事件时间和水印:源码可能包含事件时间处理的示例,展示如何定义水印策略来处理乱序事件。 5. 容错与状态管理:通过源码学习Flink的状态管理机制,了解如何保存和恢复中间状态,确保系统在故障后能够恢复。 四、数据集应用 提供的数据集可能是为了模拟真实世界的数据流,用于测试和验证Flink作业的性能和正确性。这些数据集可能涵盖各种领域,如电商交易、社交媒体数据、物联网传感器数据等。通过对这些数据集的处理,可以更好地理解Flink在实际场景中的应用。 五、学习路径 1. 阅读源码,理解每个案例的处理逻辑和实现方式。 2. 分析数据集,理解其结构和内容,根据业务需求设计合适的处理流程。 3. 编译和运行源码,观察输出结果,对比预期,调整代码以优化性能或满足新需求。 4. 尝试修改源码,实现自己的功能,例如添加新的转换操作或调整窗口策略。 通过这份“Flink案例源码和数据集.rar”,开发者不仅能掌握Flink的基础知识,还能提升解决实际问题的能力,进一步提升在大数据处理领域的专业技能。
2025-06-05 13:51:32 115KB flink 数据集
1
本文的非常详细的介绍了 flink、如何进行大数据开发的,包含flink读取kafka、文本读取,hdfs
2021-12-02 14:10:16 265KB flink案例
1