### dp-modeler手册知识点概述 #### 一、数据准备阶段 **1. Osgb格式模型** - **定义**: OSGb(OpenSceneGraph Binary)是一种用于存储三维模型的二进制格式,常用于地理信息系统(GIS)和三维建模领域。 - **作用**: 作为三维模型的基础输入数据之一,用于后续的精修与重建过程。 - **注意事项**: 需确保该格式的模型坐标系与其他数据文件一致。 **2. .xml格式空三(空中三角测量)文件** - **定义**: 空三(空中三角测量)是指通过对多个视角的照片进行处理来恢复物体的空间位置和形状的技术。 - **作用**: 提供了模型的几何信息和位置信息,是进行三维模型重构的重要依据。 - **注意事项**: 确保文件中的坐标系为平面坐标,并且转角顺序为OPK(方位角、俯仰角、滚动角)。 **3. 匀光匀色后的影像** - **定义**: 指的是对原始影像进行光照和色彩均匀化处理后的结果。 - **作用**: 有助于提高三维模型的视觉效果和精度。 - **注意事项**: 处理后的影像应与模型和其他数据保持坐标系一致。 **数据准备示例**: 通常通过特定的软件如Smart 3D或PhotoMesh进行设置,确保所有数据的一致性。 --- #### 二、新建工程与数据预处理 **1. 新建工程** - **步骤**: 打开软件后,通过“文件—新建解决方案”创建新的工程。 - **设置**: 输入工程名称并指定保存路径。 - **目的**: 为接下来的数据导入和处理提供工作环境。 **2. 数据预处理** - **航空影像参数导入**: 将空三数据导入到软件中,为后续的操作提供基础。 - **Osgb格式转换**: 对Osgb格式的模型进行转换处理。 - **Osgb至Osg**: 转换为OSG格式。 - **Osg至Ive**: 进一步转换为IVE格式。 - **目的**: 使模型格式符合软件的要求,便于后续编辑和处理。 --- #### 三、模型修饰流程 **1. 模型导入** - **步骤**: 将准备好的模型导入到网格编辑视图中。 - **目的**: 准备开始对模型进行精细调整。 **2. 画范围线** - **步骤**: 在矢量测图图层管理器中新建图层,绘制范围线。 - **目的**: 用于定义模型重建的范围。 **3. 批量重建** - **步骤**: 选择已绘制的范围线,执行批量重建命令。 - **目的**: 快速完成指定区域的模型重建。 **4. 重建平面** - **步骤**: 激活重建层,选择范围边界线进行重建预览,设定内收值和平均高程后生成新平面。 - **目的**: 改善平面部分的模型细节。 **5. 显示平面** - **步骤**: 在网格中找到重建后的平面并显示出来。 - **目的**: 检查重建平面的效果。 **6. 建模** - **勾勒顶部轮廓线**: 在模型管理器中新建图层,绘制多段线来定义屋顶轮廓。 - **挤出主体结构**: 使用倾斜影像创建柱体,挤出屋檐厚度以形成立体结构。 - **补面与复制面**: 创建新的面并进行复制,以便快速构建模型表面。 - **内偏移与挤出柱体结构**: 通过内偏移来调整模型的细节,挤出柱体来增强模型的立体感。 - **自动贴图**: 自动为模型应用纹理,提升其真实感。 --- #### 四、成果导出 **1. 成果数据组织** - **步骤**: 创建一个总的文件夹,用于存放最终的成果数据。 - **内容**: 包含DP精修的模型、DP重建地面平面以及修改后的场景。 **2. 导出精修模型** - **步骤**: 在模型管理器中选择需要导出的模型,并将其导出为OBJ格式。 - **注意事项**: 设置的偏移量需与osgb文件中的偏移量保持一致,随后将OBJ格式模型转换为OSGb格式。 **3. 导出DP重建地面平面** - **步骤**: 导出模型分级为IVE格式,修改报告文件中的偏移量,再将IVE格式转换为OSGb格式。 **4. 修改后的模型转换** - **步骤**: 将修改后的OSG模型转换为OSGb格式模型。 - **注意事项**: 确保偏移量的一致性。 **5. 成果串连** - **步骤**: 将转换好的OSGb文件放置于同一个文件夹中,并使用串工具将它们串联起来。 - **目的**: 形成完整的三维模型数据集,便于后续的应用与展示。 通过以上详细的步骤介绍,可以清晰地了解从数据准备到最终模型导出整个流程中的关键技术和方法。这对于利用天际航倾斜摄影精细化三维建模系统的用户来说是非常有价值的指南。
2025-07-10 12:35:18 23.16MB de-modeler
1
在本文中,我们将深入探讨如何使用西门子的TIA Portal 15.1集成自动化工具,特别是博图(TIA Portal)中的WinCC Professional与PLCSIM进行Profibus-DP通信,以便进行组态仿真工程。这个过程适用于配置一个使用315-2DP CPU的S7-300 PLC系统。我们将详细解析每个步骤,帮助读者理解并掌握这一关键的工业自动化技能。 我们需要了解Profibus-DP。Profibus(Process Field Bus)是用于工业自动化的一种全球标准现场总线系统,而DP(Decentralized Peripherals)是Profibus的一个子系统,主要用于I/O设备和分布式站点之间的高速通信。315-2DP CPU是西门子S7-300系列中支持Profibus-DP通信的处理器。 1. **安装与配置TIA Portal**: - 安装西门子TIA Portal 15.1,确保所有必要的组件都已包含,如Step 7、Simatic Manager和WinCC。 - 创建一个新的项目,选择适当的硬件配置,包括315-2DP CPU和WinCC Professional。 2. **配置PLC**: - 在Step 7中,为315-2DP CPU分配Profibus-DP接口,并设置DP参数,如站地址、波特率和诊断参数。 - 编程PLC逻辑,使用SCL或Ladder Diagram(LD)语言定义Profibus-DP通信协议,例如定义输入/输出数据的映射和处理。 3. **配置WinCC Professional**: - 在WinCC工程中,创建新的变量表,定义与PLC通信的变量,这些变量将在人机界面(HMI)上显示和操作。 - 配置通信驱动,选择“SIMATIC S7”并指定与315-2DP CPU的连接参数,包括Profibus-DP的站地址。 4. **建立连接**: - 在TIA Portal中,通过“Online & Diagnostics”连接到PLCSIM仿真器,确保PLCSIM已配置为模拟315-2DP CPU和相关的Profibus-DP设备。 - 在PLCSIM中启动仿真,检查PLC程序是否正确运行,无错误或警告。 5. **进行仿真**: - 在WinCC Professional中,启动HMI,监控和操作通过Profibus-DP与PLCSIM通信的变量。 - 调试和测试HMI的交互,确保数据的准确传输和处理。 6. **优化与调试**: - 使用TIA Portal的诊断功能,监控Profibus-DP的通信状态,查找并解决可能出现的问题。 - 根据需要调整通信参数,优化数据传输速度和稳定性。 通过以上步骤,我们能够成功地在TIA Portal 15.1的环境中,利用博图WinCC Professional与PLCSIM进行Profibus-DP通信,实现S7-300 PLC的组态仿真。这个过程对于学习和实践工业自动化系统的开发与调试至关重要,有助于提升工程师的技能和效率。在实际工程应用中,这样的仿真技术可以有效减少硬件成本,提高项目的测试和验证质量。
2025-06-27 20:09:24 19.19MB 网络 网络
1
基于DP动态规划的全局最优能量管理策略:ECVT构型车辆电量维持型电池SOC管理策略与算法开发研究,基于DP动态规划的全局最优能量管理策略——ECVT车辆构型与电量维持型电池SOC策略,基于DP动态规划的全局最优能量管理策略,程序为MATLAB m编程完成,大约700行左右。 1.车辆构型为功率分流型(ECVT),类似丰田Pruis构型。 2.电池SOC为电量维持型策略。 3.全程序包含逆向迭代和正向寻优过程。 4.DP作为基于优化的整车能量管理策略的基础,对后续ECMS能量管理策略和MPC能量管理策略的开发学习有着重要作用,可以在此程序基础上进行更改和延伸。 ,基于DP的动态规划; 全局最优能量管理策略; MATLAB m编程; 功率分流型车辆构型(ECVT); 丰田Pruis构型; 电池SOC电量维持策略; 逆向迭代与正向寻优过程; 优化整车能量管理; ECMS与MPC能量管理策略基础。,基于DP算法的功率分流型车辆全局能量管理策略:逆向迭代与正向寻优的MATLAB m程序实现
2025-06-17 09:09:03 1.77MB 数据结构
1
1、包含Display Port Standard V1.1a 2007 2、包含Display Port Standard V1.2 2010 3、包含Display Port Standard V1.2a 2012 4、包含Display Port Standard V1.4 2015 (以及中文翻译版DisplayPort (DP) 协议标准 V1.4_dual-translated) 5、包含DP2.0
2025-04-09 10:55:29 312.02MB DP协议 DisplayPort
1
伦茨GSE files for Lenze Profibus-DP communication modules E94AYCPM Servo Inverter 9400 i550 i8400 IO1000
2024-10-03 02:36:14 1.44MB Lenze
1
### DisplayPort (DP) 协议标准 V1.4 知识点解析 #### 一、概述 **DisplayPort (DP)** 是一种用于传输视频、音频及其他数据的标准接口,广泛应用于内部连接(如PC或显示器内部)及外部显示连接(如PC到显示器、PC到电视等)。它由视频电子标准协会(Video Electronics Standards Association,VESA)制定并维护。 #### 二、版本历史 - **DP v1.1a**:修正了先前版本中的错误,并添加了一些澄清。 - **DP v1.2**:引入了多项增强功能,包括更高的速度操作、更灵活的拓扑管理、单个连接上的多流支持、更快的辅助通道通信、改进的音频支持以及一个新的小型连接器。 - **DP v1.2a**:进一步修正了DP v1.2中的错误,并添加了更多的澄清。 - **DP v1.3**:增加了每通道8.1Gbps的链接速率,并提高了在客厅环境中使用的友好性,适用于直接连接到客厅显示设备以及通过DP转HDMI转换器连接。 - **DP v1.4**:新增了对VESA Display Stream Compression (DSC)的支持,可实现视觉无损的8K/10Kp60Hz视频传输,同时支持高达32通道的LPCM音频传输(最高可达192kHz)和HBR 8通道音频(最高可达1536kHz),以实现无视觉闪动的DSC比特流传输,引入Reed Solomon (254, 250)前向纠错技术来提高数据传输的稳定性。 #### 三、核心特点与功能 1. **高速传输**:随着版本的升级,DisplayPort的速度不断提升,最新版本能够支持更高的数据传输率,满足高清视频传输的需求。 2. **多流传输**:单个DisplayPort连接可以同时传输多个视频流,这意味着可以通过一根线缆连接多个显示器,简化了布线并提高了效率。 3. **灵活的拓扑管理**:支持复杂的显示配置,比如菊花链式连接或分屏显示等,提供了更多的灵活性。 4. **音频传输**:不仅支持视频信号的传输,还支持高质量的音频传输,包括最新的音频格式。 5. **辅助通道**:提供一个额外的高速通信通道,用于设备间的控制和状态信息交换。 6. **压缩技术**:VESA Display Stream Compression (DSC)技术可以在不损失画质的情况下压缩视频信号,从而提高传输效率,这对于8K及以上分辨率的视频传输尤为重要。 7. **连接器设计**:新的小型连接器使得设备更加紧凑,便于携带。 #### 四、应用场景 1. **PC与显示器连接**:最常见的应用场景之一,适用于家庭娱乐、办公环境等多种场合。 2. **游戏设备连接**:游戏玩家可以利用DisplayPort的高带宽特性获得更流畅的游戏体验。 3. **专业应用**:对于需要高分辨率或多屏幕设置的专业人士来说,DisplayPort提供了一个理想的解决方案。 4. **移动设备**:随着技术的发展,越来越多的移动设备也开始支持DisplayPort输出,方便用户将内容投射到大屏幕上。 #### 五、总结 DisplayPort作为一种开放式的数字通信接口标准,在不断发展的过程中逐步完善其功能和性能,为用户提供了更加高效、灵活且高质量的视频和音频传输方案。无论是个人用户还是专业应用领域,DisplayPort都展现出了其强大的适用性和扩展能力。
2024-08-01 17:58:21 333.23MB
1
DisplayPort (DP) 1.4 规范是由视频电子标准协会(VESA)制定的,旨在提供一种灵活的系统和设备,用于在源设备和接收设备之间通过数字通信接口传输视频、音频和其他数据。该标准不仅适用于内部连接,如个人电脑或显示器内的接口,也适用于外部显示连接,例如PC与显示器、投影机、电视之间的接口,以及DVD播放器与电视显示设备之间的连接。 DP 1.4 版本的更新主要包含以下几个关键特性: 1. **DPCD (DisplayPort Configuration Data)**:这是DP标准的一部分,用于设备间的配置和通信。DPCD是一个寄存器集,允许源设备和接收设备交换信息,例如分辨率、颜色空间和连接类型等。 2. **物理层 (Phy Layer)**:物理层处理实际的信号传输,包括编码、时钟恢复和信号质量的优化。DP 1.4支持更高的数据速率,例如8.1 Gbps/lane,以提供更高质量的视频和音频传输。 3. **链路层 (Link Layer)**:链路层负责数据包的传输和错误校验,确保数据在物理层上传输的可靠性。DP 1.4引入了新的特性,如Display Stream Compression (DSC),这是一种视觉上无损的压缩技术,允许高效传输8Kp/10Kp60Hz的视频流。 4. **HDCP (High-bandwidth Digital Content Protection)**:HDCP是一种数字版权保护协议,用于防止未授权的复制和分发高清晰度内容。DP 1.4可能支持更新的HDCP版本,以提供更强的安全性。 5. **辅助通道 (AUX Channel)**:AUX通道是DP中的一个双向通信信道,用于设备间的控制和配置。DP 1.4提高了AUX通道的通信速度,增强了设备的动态调整和管理能力。 6. **DP_PWR电压级别**:DP 1.4为下游DisplayPort设备增加了DP_PWR电压选项,这有助于设备的电源管理和能效优化。 DP 1.4之前的版本也进行了多次修订和完善。DP 1.1a修复了错误并提供了更明确的说明;DP 1.2增加了更高的速度、更灵活的拓扑管理、单个连接上的多个流、更快的辅助通道通信、增强的音频支持以及新的小型连接器;DP 1.2a同样进行了错误修正和澄清;DP 1.3则引入了8.1 Gbps/lane的链接速率,以适应客厅环境,并通过DP-to-HDMI转换器改善了直接连接到客厅显示器的体验。 DP 1.4还特别强调了Reed Solomon (254, 250)编码,这是一种纠错编码技术,用于确保DSC位流传输的无故障,确保视频流的无缝播放。此外,DP 1.4扩展了音频传输能力,支持最高达32声道的LPCM音频(192kHz)和高保真8声道音频(高达1536kHz)。 DisplayPort 1.4规范的这些改进和新功能极大地提升了数字显示的性能和用户体验,尤其是在高分辨率视频和多声道音频传输方面。随着技术的发展,DP 1.4将继续为家庭娱乐、专业工作和多媒体应用提供强大的支持。
2024-07-27 16:06:06 11.85MB
1
详细描述如何操作泰克示波器测试Displayport
2024-07-03 14:31:32 6.43MB
1
ACM之树形DP,利用子节点的信息维护父节点信息,想在区域赛拿奖的童鞋就抱走吧
2024-07-01 21:08:12 179KB 树形DP
1
基于DP动态规划的混合动力汽车,P2构型 1.车辆数据来源advisor。 2.电池SOC为电量维持型策略。 3.全程序包含逆向迭代和正向寻优过程。 4.DP可为后续mpc提供参考,也可将数据提取作为神经网络训练和规则作为参考。
2024-06-28 00:09:18 305KB 动态规划 神经网络
1