### Oracle协议分析 #### 概述 Oracle网络通信机制的核心在于其独特的协议栈设计,这一设计使得客户端与服务器之间的交互不仅高效而且安全。本文将深入探讨Oracle网络协议的基础原理及其在网络传输过程中的具体表现形式。 #### Oracle网络架构 Oracle网络架构紧密地与OSI模型相对应,这使得Oracle能够在多种不同的传输协议上进行数据交换,例如TCP/IP。整个架构分为几个关键层级: 1. **应用层**:提供了客户端和服务器应用程序之间的接口,如Oracle Call Interface (OCI) 和 Oracle Protocol Interface (OPI)。 2. **表现层**:Two-Task Common (TTC) 协议负责处理客户端和服务器间的数据和字符转换。 3. **会话层**:主要由NET8协议构成,包括Net基础、路由/命名/授权以及TNS协议。 4. **传输层**:透明网络底层协议 (TNS) 负责选择适当的协议适配器并封装数据。 #### TNS协议详解 TNS (Transparent Network Substrate) 是Oracle实现跨平台通信的关键技术之一。它提供了一种灵活的方式来选择和配置网络传输协议,确保数据的安全性和完整性。 - **TNS协议组成**:TNS协议由三部分组成——Net基础、Routing/Naming/Auth和TNS本身。 - **Net基础**:处理基本的网络连接和数据传输。 - **Routing/Naming/Auth**:负责路由选择、名称解析和服务认证。 - **TNS**:作为中间层,选择合适的协议适配器,并封装数据以便传输。 - **Oracle JDBC客户端**:对于理解TNS协议来说,Oracle JDBC客户端是一个非常有价值的资源。通过查阅官方文档,开发者可以更好地理解如何使用JDBC与Oracle数据库进行通信,同时了解到TNS协议的工作原理。 #### 传输流程 客户端与服务器之间的通信遵循一定的步骤: 1. **客户端发送连接请求**:客户端首先向服务器发送连接类型数据。 2. **服务器响应**:服务器收到请求后,可能会返回一个重定向类型的数据。 3. **客户端重连**:根据服务器的响应,客户端可能需要重新连接到指定的端口,并再次发送连接类型数据。 4. **服务器确认连接**:如果一切正常,服务器会返回一个接受类型的数据,从而完成连接建立过程。 #### TNS数据格式 TNS数据包具有固定的格式,包括包头和数据部分: 1. **包头 (Header)**:包含了请求的具体类型,如连接、数据传输等。 2. **数据部分 (Data)**:包含了实际的数据内容。 ##### 包头格式 - **Length (ub2)**:表示整个数据包的长度。 - **PacketChecksum (ub2)**:数据包的校验和,用于确保数据传输的完整性。 - **Type (ub1)**:数据包的类型,如连接、接受等。 - **Flag (ub1)**:标识位,用于特殊的功能标记。 - **HeaderChecksum (ub2)**:包头的校验和。 ##### 数据包类型 - **1 (Connect)**:用于建立连接。 - **2 (Accept)**:表示接受连接。 - **3 (Acknowledge)**:确认消息。 - **4 (Refuse)**:拒绝连接。 - **5 (Redirect)**:重定向请求。 - **6 (Data)**:数据传输。 - **7 (Null)**:空包。 - **8 (Unknown)**:未知类型。 - **9 (Abort)**:终止连接。 - **10 (Unknown)**:未知类型。 - **11 (Resend)**:请求重发。 - **12 (Marker)**:标记包。 - **13 (Attention)**:提醒包。 - **14 (Control)**:控制包。 #### 抓包示例 使用Wireshark抓取Oracle通信数据包,可以深入了解其内部结构和传输细节。 ##### 示例解读 以下是一个抓包实例的解读: - **0000:000c29cac5be**:目标MAC地址。 - **0000:005056c00008**:源MAC地址。 - **0010:45**:显示IP协议版本及包头长度。 - **0010:0115**:网络协议总长度。 - **0010:6d15**:鉴别码。 - **0010:4000**:偏移片段设置。 - **0010:80**:生存时间 (TTL)。 - **0010:06**:TCP协议标识。 - **0010:4c2a**:头部校验和。 - **0010:ac107401**:源IP地址。 - **0010-0020:ac107481**:目标IP地址。 - **0020-0030**:TCP协议段内容。 - **0030-0120**:TNS协议内容。 - **0030:00ed**:包长。 - **0030:0000**:包校验和。 - **0030:01**:包类型(为1)。 - **0030:00**:预留字节。 - **0030:0000**:头部校验和。 - **0030-0060**:connect包头。 - **0070-0120**:connect data。 #### SQL语句的数据包示例 - **SELECT (select*fromNEWTABLE where USERNAME='mibow')**:查询语句。 - **INSERT (insert into NEWTABLE(ID,USERNAME) values('9','nicemibow'))**:插入语句。 通过上述分析,我们可以清楚地看到Oracle网络通信过程中涉及的各种数据包类型及其内容,这对于深入理解Oracle数据库的工作原理和优化网络性能至关重要。
2025-07-28 16:14:21 356KB oracle 抓包分析
1
本文详细分析了TCP三次握手、四次挥手wireshark抓包过程。。传输控制协议(TCP,Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793 [1] 定义。 TCP旨在适应支持多网络应用的分层协议层次结构。 连接到不同但互连的计算机通信网络的主计算机中的成对进程之间依靠TCP提供可靠的通信服务。TCP假设它可以从较低级别的协议获得简单的,可能不可靠的数据报服务。 **TCP协议概述** TCP(Transmission Control Protocol)是互联网上最基础的传输层协议之一,它提供了面向连接的、可靠的、基于字节流的通信服务。TCP通过三次握手建立连接,四次挥手断开连接,确保数据在不可靠的网络环境中能够准确无误地传输。 **TCP三次握手** TCP连接的建立需要经过三次握手。这个过程确保了双方都有能力接收和发送数据,并且都同意建立连接。 1. **第一次握手**: - 客户端发送一个带有SYN(同步序列编号)标志的数据包,其中包含一个随机的Sequence number(序列号)x。 - SYN=1 表示请求建立连接,ACK=0 表示此时不确认序列号。 2. **第二次握手**: - 服务器收到请求后,回复一个SYN+ACK的数据包,确认客户端的序列号x并发送自己的序列号y。 - SYN=1 表示同意连接,ACK=1 表示确认客户端的序列号x+1,Acknowledgment number 设置为 x+1。 - 同时,服务器也会设置一个随机的Sequence number y。 3. **第三次握手**: - 客户端收到服务器的响应后,发送一个仅带ACK标志的数据包,确认服务器的序列号y+1。 - ACK=1 表示确认服务器的序列号,Acknowledgment number 设置为 y+1。 - 至此,TCP连接建立完成,双方可以开始传输数据。 **TCP四次挥手** TCP连接的关闭则涉及四次挥手,确保双方都能接收到对方不再发送数据的信号。 1. **第一次挥手**: - 客户端发送一个FIN(结束)标志的数据包,表示自己不再有数据发送,Sequence number 设置为某个值,如1392,Acknowledgment number 通常为上次接收到的服务器的序列号,如607。 2. **第二、三次挥手**: - 如果服务器无数据待发送,会立即回复一个FIN+ACK的数据包,确认客户端的序列号并告知自己的FIN标志,表示也准备关闭连接。 - 若服务器还有数据待发送,会在数据发送完毕后才发送FIN,这两次挥手可能会合并。 3. **第四次挥手**: - 客户端收到FIN后,回复一个仅带ACK标志的数据包,确认服务器的序列号,表明已准备好关闭连接。 - 客户端发送完ACK后进入TIME_WAIT状态,等待一段时间确保服务器收到确认后关闭连接。 4. **服务器收到ACK后,关闭连接**。 通过Wireshark这样的网络嗅探工具,可以清晰地观察到TCP三次握手和四次挥手的过程,以及每个阶段的数据包细节,帮助理解TCP连接的生命周期和可靠性机制。在实际网络应用中,了解这些基本原理对于问题排查和性能优化至关重要。
2025-06-11 08:27:59 727KB 网络协议 wireshark 抓包
1
rtmp交互流程抓包分析 用wireshark工具分析
2024-01-13 16:08:39 2.84MB rtmp wireshark
1
本文章主要讲述使用VS2019编写C#程序,并通过UDP/TCP进行通信,使用Wireshark抓包软件抓取发送的包并分析数据结构,由于涉及到客户端和通信端,可以使用两台电脑,一台电脑编写客户端代码,一台电脑编写服务器端代码,也可以在一台电脑上开两个VS2019同时编译两个端,看自己的选择。实验环境:Window10系统开发工具:VisualStudio2019使用工具:Wireshark3.4.0下载Wireshark安装包,点击下面的链接提取,里面有2.6.4和3.2.7版本的注:我安装3.2.7版本的时候安装报错1603,百度了好久都没解决,但我室友安装时并没问题,所以我安装的是2.6.
2023-11-29 16:29:39 2.49MB
1
RTSP wireshark抓包分析
2023-03-27 17:04:55 8.47MB wireshark 测试工具 网络
1
利用winpcap可以截获网络数据包,把网卡的工作模式改为混杂模式
2023-03-23 17:28:27 462KB winpcap 抓包 分析数据包
1
五、实验目的:使用Wireshark软件验证TCP协议连接与释放过程中的“三次握手”及“四次挥手” 六、实验内容:使用Wireshark软件抓包,验证TCP协议
2022-12-04 17:02:26 1.52MB
1
webrct 抓包分析
2022-11-07 14:33:00 1.53MB webrtc
1
通过DHCP抓包详细分析DHCP协议的详尽内容
2022-11-04 17:31:08 308KB DHCP协议分析
1
一个免费的HTTP抓包分析工具 Fiddler Web Debugger
2022-10-07 17:34:23 544KB HTTP 抓包分析
1