内容概要:本文介绍了基于Simulink仿真的无人机开发解决方案,采用MBSE(Model-Based Systems Engineering)方法论,涵盖系统架构设计、详细建模、自动化测试、自动代码生成以及硬件部署五个主要阶段。首先利用SysML语言进行系统架构设计,明确无人机各子系统的组成及其相互关系;接着借助Matlab/Simulink/Stateflow进行详细建模,创建高度模块化的飞行控制、导航等子系统模型并描述状态转换逻辑;随后实施多种自动化测试(如MIL、SIL、PIL、HIL),确保模型的正确性和可靠性,并自动生成详尽的测试报告;再通过Matlab的自动代码生成功能将模型转化为高效可读的代码;最终将代码部署到不同硬件平台(如FPGA Zynq、DSP、STM32、ARM),并通过实际飞行测试验证系统性能。 适合人群:从事无人机开发的研究人员、工程师及高校相关专业师生。 使用场景及目标:①掌握基于MBSE的无人机开发全流程;②提升无人机开发效率和产品质量;③熟悉SysML、Simulink、Stateflow等工具的应用;④了解自动化测试和代码生成的最佳实践。 其他说明:文中强调了MBSE方法论的优势,即通过模型驱动的方式提高开发效率和质量,同时确保系统的可靠性和安全性。
2025-11-18 19:48:26 537KB
1
在高电压技术课程中,我们通过Simulink仿真对气隙局部放电现象进行了研究。仿真结果显示,气隙的变化(在仿真中通过电阻参数的不同来体现)会对局部放电的效果产生显著影响。具体而言,当气隙的电阻参数发生变化时,局部放电的特征也随之改变。这一发现进一步证实了气隙特性与局部放电行为之间的密切关系,为深入理解高电压设备中局部放电的机理提供了重要的理论依据和实验参考。
2025-11-18 17:56:49 56KB 高电压技术 Simulink仿真
1
基于LQR算法的自动驾驶车道保持辅助(LKA)系统的设计与实现方法。首先解释了LKA的基本概念及其重要性,接着深入探讨了使用经典二自由度自行车模型来描述车辆动态特性,并展示了如何利用Matlab定义状态空间方程。随后,文章讲解了LQR控制器的设计步骤,包括选择合适的Q和R矩阵以及求解反馈增益矩阵K的方法。此外,还阐述了如何将Carsim软件用于模拟车辆动力学行为,而Simulink则用来运行控制算法,两者通过特定接口进行数据交换,实现了联合仿真平台的搭建。文中提供了具体的S-function代码片段,用于展示如何在Simulink中处理来自Carsim的数据并计算所需的前轮转角。最后分享了一些调参技巧,如调整Q矩阵中各元素的比例关系以改善系统性能,确保车辆能够稳定地沿车道行驶。 适合人群:对自动驾驶技术感兴趣的科研人员、工程师以及相关专业的学生。 使用场景及目标:适用于希望深入了解LQR算法在自动驾驶领域的应用,特别是想要掌握车道保持辅助系统设计流程的人群。通过本教程可以学会构建完整的LKA控制系统,从理论推导到实际仿真的全过程。 其他说明:文中提到的内容不仅涵盖了LQR算法的基础知识,还包括了许多实用的操作细节和技术要点,有助于读者更好地理解和应用这一先进的控制策略。同时鼓励读者尝试不同的参数设置,探索更多可能性。
2025-11-16 15:53:11 471KB
1
内容概要:本文探讨了永磁同步电机在升速阶段电流过大和高速阶段稳定性差的问题,并提出了采用MTPA(最大转矩)弱磁控制策略的解决方案。文章首先介绍了弱磁控制的背景与原理,随后详细描述了在Simulink中构建的仿真模型。该模型分为两个阶段:启动与升速阶段采用MPTA最大转矩控制,确保电机转矩稳定在4.3N·m;进入恒转速恒转矩运行阶段后,引入弱磁控制模型,使定子电流波形保持稳定,显著提升了调速范围。通过对仿真结果的分析,验证了MPTA弱磁控制策略的有效性,不仅提高了电机的运行效率,还延长了其使用寿命。 适合人群:从事电机控制系统研究的技术人员、高校相关专业学生、对电驱动技术感兴趣的科研人员。 使用场景及目标:适用于研究和开发高效电机控制系统的场合,旨在解决永磁同步电机在不同运行阶段的电流和稳定性问题,提高电机的整体性能。 其他说明:文中提供的全套仿真模型及相关参考文献,有助于读者进一步理解和应用MPTA弱磁控制策略。
2025-11-14 16:24:00 1.61MB
1
"四开关Buck-Boost双向DCDC转换器Matlab Simulink 2016b仿真模型研究与应用","四开关Buck-Boost双向DCDC转换器Matlab Simulink 2016b仿真模型研究与应用",四开关 buck-boost 双向DCDC matlab simulink仿真 (1)该模型采用 matlab simulink 2016b 版本搭建,使用matlab 2016b及以上版本打开最佳。 (2)该模型已经代为转到各个常用版本。 【算法介绍】 (1)采用三模式调制方式; (2)外环电压环采用PI控制,内环电流环采用PI控制; (3)利用电池作为充放电对象(负载),亦可自行改成纯电阻; (4)一共6个仿真文件: 固定输入24V,分别输出12V,24V,36V;(三个) 分别输入12V,24V,36V,固定输出24V。 ,四开关; buck-boost; 双向DCDC; matlab simulink 2016b; 三模式调制; PI控制; 电池充放电; 仿真文件,基于Matlab Simulink的四开关Buck-Boost双向DCDC转换器仿真模型
2025-11-14 13:13:44 401KB
1
内容概要:本文详细探讨了基于Simulink的永磁同步电机(PMSM)直接转矩控制(DTC)系统仿真及其模糊控制的应用。首先介绍了永磁同步电机DTC控制的基本原理,强调了通过实时检测电机状态并调节电流来优化电机性能的关键点。接着阐述了Simulink在DTC控制系统仿真中的具体应用,包括构建完整仿真模型、模拟电机启动、运行、故障检测等过程。重点讨论了模糊控制算法的实现、电机参数的实时调整以及电流的动态调节。最后通过对仿真结果的分析,评估了DTC控制系统的性能,并提出了优化改进建议。 适合人群:从事电机控制、自动化工程及相关领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解永磁同步电机DTC控制系统的工作机制、仿真方法及优化路径的研究者和技术开发者。目标是提升对DTC控制系统的设计能力和实际应用水平。 其他说明:文中提到的技术细节对于理解和掌握现代电机控制技术有重要帮助,尤其是Simulink和模糊控制算法的实际操作经验。
2025-11-14 09:49:24 509KB
1
本毕业设计聚焦于永磁同步电机的模糊 PID 控制策略,采用 Simulink 软件搭建了仿真模型,文件名为“sl10.slx”。该设计深入探究了如何通过模糊 PID 控制方法优化永磁同步电机的性能表现,旨在解决传统 PID 控制在面对复杂工况时的不足,如参数整定困难、对系统非线性特性适应性差等问题。通过对模糊逻辑与 PID 控制的有机结合,利用模糊控制器对 PID 参数进行在线调整,使电机在不同负载、不同转速等运行条件下都能保持良好的动态响应和稳态精度。仿真结果表明,该控制方案有效提升了电机系统的控制品质,具有较高的实用价值和研究意义。欢迎对永磁同步电机控制领域有研究、有需求的同学或专业人士获取此设计资源,共同交流探讨相关技术细节与优化方向。
2025-11-12 21:20:27 56KB 永磁同步电机 模糊PID控制
1
内容概要:本文详细介绍了利用Matlab/Simulink对IEEE39节点系统进行短路故障分析及其对发电机功角、电压稳定性和特征根根轨迹的影响。主要内容包括:IEEE39节点系统的建模与潮流计算,通过MATPOWER工具包进行潮流计算,确保系统正常运行状态下的电压分布;短路故障分析,通过Simulink模型模拟短路故障,观察故障前后系统的变化;短路后发电机功角电压稳定分析,探讨故障对发电机稳定性的影响;特征根根轨迹分析,研究励磁增益对系统稳定性的作用。这些分析为电力系统的规划、设计和运行提供了技术支持。 适合人群:从事电力系统研究和技术开发的专业人士,尤其是熟悉Matlab/Simulink工具的工程师和研究人员。 使用场景及目标:适用于电力系统仿真、故障分析、稳定性研究等领域。主要目标是通过仿真手段深入了解电力系统在不同工况下的运行特性和稳定性,优化系统设计和运行参数。 其他说明:文中提供了具体的Matlab代码示例,帮助读者更好地理解和应用相关技术和方法。同时,强调了参数选择和调整的重要性,提醒读者不要迷信默认参数,需根据实际情况进行细致调整。
2025-11-11 17:14:24 191KB
1
四旋翼无人机的轨迹跟踪控制原理及其在MATLAB和Simulink环境下的仿真研究。首先阐述了四旋翼无人机的基本构造和飞行控制机制,重点在于通过改变电机转速来调节无人机的姿态和位置。接着分别对PID控制和自适应滑模控制进行了深入探讨,提供了具体的PID控制算法实例,并展示了如何利用Simulink搭建相应的控制系统模型,实现了对无人机位置和姿态的精确控制。最后比较了这两种控制方式的效果,指出了各自的特点和优势。 适合人群:从事无人机技术研发的专业人士,尤其是对飞行器控制理论感兴趣的研究人员和技术爱好者。 使用场景及目标:适用于希望深入了解无人机控制原理的学习者,旨在帮助他们掌握PID控制和自适应滑模控制的具体实现方法,以便应用于实际项目中。 其他说明:文中不仅包含了详细的理论讲解,还附带了大量的图表和代码示例,便于读者理解和操作。此外,通过对两种控制方法的对比分析,有助于选择最适合特定应用场景的控制策略。
2025-11-11 14:01:00 401KB 无人机 PID控制 MATLAB Simulink
1
单相全桥逆变器是一种常见的电力电子转换装置,它能将直流电源转换为交流电,广泛应用于太阳能发电系统、UPS电源、电机驱动等领域。在本文中,我们将深入探讨使用Simulink和MATLAB进行单相全桥逆变器的仿真方法。 MATLAB是一款强大的数学计算软件,而Simulink是其附带的图形化仿真工具,适用于系统级的建模和仿真。在电力系统领域,Simulink因其直观易用的界面和丰富的库函数,成为进行电力电子系统仿真研究的首选工具。 构建单相全桥逆变器的模型。在Simulink环境中,我们需要从库浏览器中选择适当的模块来搭建电路。主要包括以下几个部分: 1. **直流电源模块**:这是系统的输入,可以设置为恒定电压或可调电压,模拟电池或其他直流电源。 2. **全桥逆变器模块**:由四个开关(通常使用IGBT或MOSFET)组成,通过控制这些开关的通断,实现直流电到交流电的转换。在Simulink中,可以从电力库中找到对应的逆变器模型。 3. **PWM控制器模块**:用于生成驱动开关的脉宽调制信号。可以通过调节占空比控制逆变器输出电压的幅值和频率。 4. **滤波器模块**:输出交流电经过LC滤波器,以平滑波形并消除谐波。 5. **负载模型**:可以是电阻、电感或电动机等,代表逆变器实际工作时的负载。 6. **测量与显示模块**:用于监测和分析逆变器输出的电压、电流波形,以及系统性能。 在设置好模型后,运行仿真,观察输出波形。通过分析波形,我们可以评估逆变器的性能,如输出电压的稳定性、谐波含量等。此外,还可以改变PWM控制器参数,研究其对逆变器性能的影响,或者调整负载特性,观察系统动态响应。 在提供的文件中,"单相全桥逆变器仿真.html"可能是详细的仿真步骤说明,"单相全桥逆变器仿真.txt"可能包含了仿真结果的文本记录,而"sorce"可能是一个源代码文件,包含具体的Simulink模型搭建或MATLAB脚本。 利用MATLAB和Simulink进行单相全桥逆变器的仿真,不仅可以帮助我们理解和分析逆变器的工作原理,还可以在设计阶段优化控制策略,提高系统效率和稳定性。这是一项重要的工程实践技能,对于电力电子工程师和研究人员来说不可或缺。
2025-11-10 14:24:34 948KB matlab
1