图新地球(LSV)自定义加载功能的引入,无疑为中国本土的GIS应用开发者和用户带来了一股清新的风气。LSV,即“图新地球”,它不仅仅是一个普通的地图查看工具,更是一个具有开源属性的地理信息系统软件。其强大之处,在于它能提供丰富的地图浏览、分析以及数据管理功能,支持用户进行复杂的地图数据操作和地理信息分析。而“图源LRC”功能的加入,更是让这款软件的使用体验和功能得到进一步提升。 LRC文件是图新地球的配置文件,用于存储地图服务的详细信息,包括服务地址、图层定义、比例尺范围等。用户可以通过将LRC文件拖拽至图新地球软件中,轻松完成对自定义地图源的加载。这样做不仅能够提供个性化的地图浏览体验,还可以为用户提供更加多元化的地图数据选择,从而在一定程度上弥补了天地图服务中存在的局限性——虽然天地图提供了丰富的地图服务,但用户往往难以直接下载地图数据,而图新地球的这项功能让用户能够同时享受到浏览和下载的便利性。 从描述中我们可以得知,图新地球的这个新版本与老版本相比,去除了大部分预设的图源,而这正是为了给用户更大的自由度。它允许用户通过导入老版本的LRC文件来恢复那些在新版本中被移除的地图源,从而继续享受丰富的地图服务。这种方法对于那些对老版本图新地球中的地图源已经产生依赖的用户来说,无疑是一大福音。 提到“百度地图”,这无疑是个中国用户耳熟能详的名字,作为中国领先的在线地图服务提供商,百度地图拥有广泛而丰富的地图数据,覆盖了国内大部分城市和地区。在图新地球中加载百度地图的LRC配置文件,意味着用户可以直接在图新地球中使用百度地图服务,享受到百度地图的高精度地图数据和强大的地图功能,如路线规划、实时交通信息等。 用户获得的LRC文件可能是多种多样地图服务的集合,它们以文件压缩包的形式存在,用户只需简单地进行解压处理,便可以导入到图新地球软件中。当LRC文件被导入后,图新地球会读取文件中的配置信息,并将对应的地图数据加载到软件中,为用户展现出丰富、多样的地图视图。如此一来,用户可以不局限于软件内置的图源,而是通过添加第三方地图服务,如百度地图、高德地图等,使自己的地图体验变得更加丰富多彩。 总结而言,图新地球(LSV)的“自定义加载:图源LRC”功能极大地扩展了用户的地图使用范围,解决了官方版本中一些图源缺失的问题,同时也满足了用户对更丰富地图数据的需求。通过这种方式,图新地球不仅提升了自身的实用性和便捷性,也为用户提供了更加个性化和功能更加强大的地图体验。随着地理信息系统在日常生活和专业领域的广泛应用,这款软件的功能性和灵活性,无疑会吸引越来越多用户的目光,并在GIS领域扮演着越来越重要的角色。
2025-05-12 21:12:07 2KB
1
电子工程师在设计电路板过程中,经常会遇到需要掌握多种画图软件,如Altium Designed (AD画图), Pads 原理图,Pads原理图 网表转换导入到allgero,仅供学习使用 支持非法字符替换 写教程不容易、软件开发也不容易,多多支持,谢谢!
2025-05-12 19:14:02 2.85MB 课程资源
1
线控转向系统路感模拟与力矩控制:基于参数拟合的仿真算法及PID优化控制策略的探索图,线控转向系统路感模拟及力矩控制:Simulink仿真模型中的参数拟合与PID控制策略应用,线控转向系统路感模拟及路感力矩控制 通过参数拟合设计线控转向路感模拟算法,在simulink中建立仿真模型。 模型建立后,验证双纽线工况和中心区工况的路感力矩。 通过PID,模糊PID对路感力矩进行控制。 所有效果如图 ,线控转向系统;路感模拟;路感力矩控制;参数拟合设计;Simulink仿真模型;双纽线工况;中心区工况;PID控制;模糊PID控制。,线控转向系统:路感模拟与力矩控制的仿真研究
2025-05-12 18:10:25 1011KB sass
1
全新BMS开发板 凌力尔特LTC6804 6811资料 BMS电池管理评估板 储能BMS采集板 ltc6804,PCB+原理图+底层软件驱动 有被动均衡,电流采集,硬件短路保护功能,16串,可自己扩展。 都是电子文档,给有需要的专业人士研究、量产。 BmS电池管理系统源码,包括PCB,源理图,源码 BMS(电池管理系统)是现代电子设备中不可或缺的组件,尤其是在电池供电的领域中,比如电动汽车、储能系统和便携式电子产品等。BMS的主要作用是实时监控和管理电池的运行状态,确保电池的安全、高效和长寿命。全新开发的BMS开发板采用了凌力尔特公司的LTC6804和LTC6811芯片,这两个芯片是专门用于电池组监测的集成电路,能够处理多节电池串联的情况,具备高精度电压和温度测量能力。 开发板提供的被动均衡功能是为了确保电池组中每节电池的充放电状态一致,防止过度充电或放电,从而延长电池寿命。电流采集功能可以实时监控电池的充放电电流,这对于评估电池的健康状况和性能至关重要。硬件短路保护功能是BMS中的重要安全特性,它能够在检测到短路的情况下迅速切断电流,防止安全事故的发生。 该开发板支持16串的电池管理系统,意味着它可以同时管理多达16节电池的串联组合。这样的设计使得开发板能够适应更大规模的电池组应用,比如在储能和电动车辆中。而且,开发板还具备可扩展性,用户可以根据自己的需求进行模块的扩展,使其更加灵活地适应不同的应用场景。 PCB(印刷电路板)和原理图是BMS开发板设计的基础,而底层软件驱动则是确保硬件功能得以正确执行的软件部分。这些文件的提供,让专业人士可以深入研究BMS的工作原理,同时也为量产提供了便利。通过分析这些文件,研究人员和工程师能够更好地理解BMS的内部逻辑和工作流程,从而进行优化和创新。 BMS电池管理系统源码的提供,意味着除了硬件设计之外,还能够获得软件层面的支持。这对于想要自定义BMS功能或者深入研究电池管理算法的开发者来说是一个极大的便利。源码的开放性可以促进技术创新,使得BMS在未来的应用中更加智能化、高效化。 全新BMS开发板结合了凌力尔特的先进芯片技术,具备了电池管理所需的基本和高级功能,支持大规模应用且提供了高度的扩展性。它不仅适合研究人员进行深入的技术分析,也适合制造商进行批量生产。随着源码和相关电子文档的共享,该开发板有望推动电池管理技术的发展和创新。
2025-05-12 17:15:46 1.44MB
1
黄沙街站信号设备平面布置图AutoCAD
2025-05-12 16:59:12 96KB AutoCAD
1
新能源从业者福音,bms电池管理系统源码,大概20g资料。 BMS硬件设计资料 原理图+PCB,bms企业内部资料。 有被动均衡,电流采集,硬件短路保护功能,16串,可自己扩展。 都是电子文档,不接受任何形式 ,不讲价,给有需要的专业人士研究、量产。 BmS电池管理系统源码,包括PCB,源理图,源码 新能源行业的发展近年来一直是国内外关注的热点,特别是随着全球对绿色能源和可再生能源的需求日益增长,作为新能源汽车和储能系统核心部件的电池管理系统(BMS),其重要性愈发凸显。BMS主要负责电池的充放电管理、性能监测、故障诊断以及安全保护等功能,对保证电池的使用效率和安全运行起着关键作用。 本文档集的提供者,特地整理了一系列与BMS相关的资料,供新能源从业人士深入研究和实际应用参考。资料内容涵盖BMS的源码分析、硬件设计、原理图和PCB布局等专业领域知识。其中,源码部分包含了电池管理系统核心的算法和控制逻辑,是实现BMS功能的基础。而硬件设计资料,则为BMS的物理实现提供了详尽的设计图纸和布局文件,这对于从事电池管理系统硬件开发的工程师来说,具有极高的参考价值。 从文件列表中可以看出,包含了多个文件类型,既有详尽的技术文档,也有HTML格式的网页文件,以及一张图片。文档中提到了“电池管理系统全解析”、“硬件设计与源码分析”、“新能源行业新星电池管理系统源码揭秘”等内容,这些都表明了资料集的系统性和完整性。特别是提到了“被动均衡”、“电流采集”、“硬件短路保护功能”等关键技术和功能,这些都是BMS设计中的重要环节,能够帮助电池更加高效安全地工作。 此外,资料中提到的“16串”可能是指电池组串联的数量,这意味着相关资料能够帮助设计和实现更大规模的电池系统。在实际应用中,能够自己扩展系统的功能,如文档标题所示,这为适应不同新能源应用场景的需要提供了可能。 由于文档的庞大和复杂性,文档集的提供者明确指出只针对有需要的专业人士,不接受任何形式的议价,这在一定程度上保证了资料的专业性和严肃性。资料的电子形式也表明了其便于传播和更新的特性,适合在需要快速迭代和更新的新能源行业中使用。 本文档集对于新能源领域的专业人士来说,是一份不可多得的宝库。它不仅涉及到了BMS的软件和硬件设计,更提供了从基本原理到实际应用的全方位资料,无论是对于学术研究还是商业开发,都将发挥巨大的作用。
2025-05-12 16:39:30 116KB
1
隧道工程:FLAC-PFC耦合代码详解——开挖平衡与衬砌结构可视化分析,隧道开挖FLAC-PFC耦合模拟代码:内外双重区域平衡开挖与注释详解,隧道开挖flac-pfc耦合代码,包含平衡开挖部分 如图,隧道衬砌外面是pfc的ball与wall-zone,再外面是Flac的zone,每行都有很详细的注释小白也能看得懂 ,隧道开挖; FLAC-PFC耦合代码; 平衡开挖部分; 隧道衬砌; PFC的ball与wall-zone; Flac的zone; 详细注释。,FLAC-PFC耦合代码:隧道开挖与衬砌结构模拟
2025-05-12 14:58:36 905KB 正则表达式
1
STM32F103系列微控制器是基于ARM Cortex-M3内核的高性能微处理器,由意法半导体(STMicroelectronics)生产。该芯片广泛应用于嵌入式系统设计,尤其在工业控制、物联网设备和消费电子等领域。在这个资源包中,我们将重点关注其CAN(Controller Area Network)总线和485总线的实现。 CAN总线是一种多主通信协议,适用于汽车电子、自动化设备和工业控制等场合,具备高可靠性、低延迟和错误检测能力。STM32F103集成了两个独立的CAN控制器,每个都有发送和接收邮箱,能够同时处理多个传输任务。在硬件设计中,CAN接口通常需要连接到微控制器的专用引脚,例如PA11和PA12,通过电容和电阻等元件构成CAN收发器,以实现物理层通信。 485总线是一种RS-485标准,用于长距离、多节点通信,具有良好的抗噪声干扰能力。在STM32F103上,485通信通常通过UART(通用异步收发传输器)实现,通过外部的485收发器如MAX485进行电气隔离。在原理图中,485接口通常包括数据线A和B,以及DE(Data Enable)和RE(Receiver Enable)控制信号,用于控制设备的发送和接收状态。 在提供的资源中,你将找到STM32F103C8T6的原理图,它详细展示了CAN和485接口如何在电路中布局。原理图是硬件设计的关键文档,帮助开发者理解各组件之间的连接方式以及电源、信号线和地线的布置。 源码部分可能包含驱动程序和示例代码,帮助开发者理解和配置CAN和485接口。STM32CubeMX工具可以用来初始化这些外设,并自动生成初始化代码。对于CAN,开发者需要配置位时序参数,设置滤波器,然后使用HAL或LL库发送和接收消息。485通信则涉及到UART的配置,如波特率、数据格式和中断设置,以及DE和RE引脚的控制逻辑。 MINI板实验代码可能包括了演示如何使用CAN和485的示例程序,如节点间的数据交换或者简单的通信测试。阅读并理解这些代码可以帮助快速掌握STM32F103在CAN和485通信中的应用。 "板子使用前必看注意事项"文件提供了关于硬件操作和编程的提示,可能包括安全警告、接线指南和软件安装步骤,确保正确和安全地使用开发板。 这个资源包为STM32F103的CAN和485通信提供了一套完整的硬件设计和软件实现方案,适合初学者和经验丰富的开发者学习参考,进一步提升他们的嵌入式系统设计技能。
2025-05-12 13:09:01 27.09MB STM32 CAN 源码
1
雷达模糊度函数是雷达信号处理中的一个重要概念,它与雷达系统的分辨率、探测能力和目标识别紧密相关。在雷达系统中,发射的电磁波经过目标反射后返回接收器,根据接收到的回波信号,我们可以推断出目标的距离、速度等信息。然而,由于多径传播、脉冲宽度、采样率等因素的影响,信号会存在一定的模糊性,这就是所谓的雷达模糊度。 我们需要理解什么是模糊函数。在雷达系统中,模糊函数描述了雷达系统对不同距离和速度目标的响应特性。它是一个复杂的函数,通常与雷达的工作参数(如脉冲重复频率、脉冲宽度、采样间隔等)和目标的运动状态有关。模糊函数的形状直接影响着雷达的分辨能力和探测性能。 雷达模糊度函数的计算涉及到几个关键参数: 1. 脉冲重复频率(PRF):PRF决定了雷达在一个周期内发射脉冲的数量,它影响着雷达的距离分辨率。高PRF可以提高距离分辨率,但可能导致距离模糊;低PRF则反之。 2. 脉冲宽度(PW):脉冲宽度决定了雷达的测速范围。较窄的脉冲可以提供更高的速度分辨率,但可能降低距离分辨率。 3. 采样率:合适的采样率能确保雷达系统能够准确捕获回波信号,避免因过低采样率导致的混叠现象。 4. 目标运动:目标的速度和角度变化会影响雷达接收到的回波,从而影响模糊函数的形状。 为了解决模糊问题,雷达系统通常采用各种算法和技术,例如匹配滤波器、多普勒处理和快速傅里叶变换(FFT)。这些方法可以改善雷达的探测性能,减少或消除模糊现象。 匹配滤波器是最常用的一种方法,它通过设计一个与期望信号形状相匹配的滤波器来优化雷达的检测性能。多普勒处理利用目标相对雷达的多普勒频移来区分不同速度的目标,而FFT则用于将时域信号转换到频域,有助于解析雷达回波的频率成分,从而获取目标的信息。 在实际应用中,为了更好地理解和分析雷达模糊度函数,我们通常会绘制雷达模糊度图,这有助于直观地展示雷达在不同参数下的响应特性。思维导图作为一种有效的学习工具,可以帮助我们梳理和记忆这些复杂的关系,加深对雷达模糊度函数的理解。 雷达模糊度函数是雷达系统性能的关键因素,涉及到多个参数的相互作用。通过深入研究和优化模糊函数,我们可以提高雷达的探测能力,实现更精确的目标定位和识别。在实际工作中,运用思维导图进行学习和记录,可以帮助我们更好地掌握这一领域的知识。
2025-05-12 11:12:36 2.25MB 模糊函数
1
HC-SR501人体检测模块是一种广泛应用于智能家居、安防系统中的红外传感器,能够探测其探测区域内的人体活动并产生相应的信号输出,从而触发其他设备进行动作。该模块主要由红外探测器、放大电路、比较器以及输出电路组成。 原理图展示了一个典型的HC-SR501模块内部结构,其核心组件是包含双元热释电红外探测器的传感元件。这种探测器对人和动物发出的红外线十分敏感,可以检测到人体发出的红外辐射。当有人体移动进入探测区域时,探测器会捕捉到人体活动引起的红外线变化,并将其转换为电信号。 放大电路的作用是将双元热释电红外探测器输出的微弱电信号进行放大。由于原始信号非常弱,所以需要通过前置放大来增强信号,以便后续电路能更准确地进行处理。 比较器电路则用来判断信号是否足够强,以确定是否有人体移动。在HC-SR501模块中,通常会有一个可调的比较器阈值,可以通过调节外接的电位器来设定触发的灵敏度。当信号强度超过这个阈值时,比较器输出高电平,反之则输出低电平。 输出电路负责将比较器的信号传递给外部设备。模块通常提供数字开关信号输出,当检测到人体时,输出高电平;未检测到时,输出低电平。这样的输出信号可以直接连接到微控制器或其他控制设备上,用于触发警报、灯光或其他动作。 此外,HC-SR501模块还具备一些其他的特性,例如能够通过调节延时时间,来设定信号输出的持续时间,即在探测到人体活动后保持高电平输出的时间长度。模块内通常也有指示灯,用来指示模块的工作状态,方便用户进行调试。 为了使HC-SR501模块能正确工作,还需要注意其供电电压和功耗。一般情况下,HC-SR501模块的工作电压范围为4.5V至20V,其工作电流较低,因此可以使用电池供电,适合移动设备或长时间无人值守的场合。 在实际应用中,HC-SR501模块可以根据需要进行安装和调试。例如,可以调整探测模块的角度,以适应不同的检测范围和探测角度。在安装时还需要考虑避免直接日照或其他热源的干扰,以保证模块能够准确地探测到人体活动。 HC-SR501人体检测模块是集成了红外探测、信号放大、信号比较和输出控制的一体化传感器,它具有较高的灵敏度和稳定性,在智能家居、安全防护等领域发挥着重要作用。
2025-05-11 21:22:35 2.97MB HC-SR501
1