JavaSpringboot和Vue.js是当前流行的后端和前端开发框架,它们的组合可以构建高性能的Web应用。Java Springboot框架简化了基于Spring的应用开发,无需手动配置大量的XML文件,提高了开发效率。Vue.js则是一个轻量级的前端框架,通过其响应式数据绑定和组件化结构,可以轻松构建用户界面。在当前的项目中,JavaSpringboot和Vue.js被用于开发一个图书购物商城管理系统,该系统为用户提供了购书平台,并且后端与前端紧密协作,提供流畅的用户体验。 该项目包含了数据库MySQL,MySQL是广泛使用的开源关系型数据库管理系统,它以其高性能、高可靠性和易用性在全球范围内被广泛应用。在这个项目中,MySQL作为数据库存储解决方案,负责数据的持久化存储,如用户信息、图书信息以及订单信息等。使用MySQL可以确保数据的安全性、完整性和一致性。 前端页面使用了Vue.js框架,前端页面的设计对于用户体验至关重要。在该项目中,通过Vue.js构建了动态的用户界面,实现了商品展示、搜索、购买和用户交互等功能。Vue.js的组件化开发模式使得页面可以按需加载,从而提高了页面的加载速度和渲染效率。 项目中还包含了毕业论文和开题报告,这表明了项目的学术价值和实用性。毕业论文详细介绍了项目的研究背景、需求分析、系统设计、实现过程以及测试结果等多个方面。开题报告则是在项目启动前的准备工作,阐述了研究的目的、意义、研究方法和预期成果等。这些文档对于理解项目的研究内容和开发过程非常有帮助。 项目还提供了答辩PPT,答辩PPT是项目评审和展示的重要组成部分。在答辩PPT中,通常会介绍项目的概要、技术亮点、核心功能以及实际应用效果等,帮助评审人员快速把握项目的重点和优势。 该项目是一个完整的图书购物商城管理系统,其开发过程中采用了JavaSpringboot和Vue.js的技术栈,集成了MySQL数据库,提供了前后端分离的架构设计。项目还包含了一系列的文档资料,如毕业论文、开题报告和答辩PPT,为理解和评估该项目提供了全面的材料。
2025-07-28 14:24:34 158.89MB java
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 想轻松敲开编程大门吗?Python 就是你的不二之选!它作为当今最热门的编程语言,以简洁优雅的语法和强大的功能,深受全球开发者喜爱。该文档为你开启一段精彩的 Python 学习之旅。从基础语法的细致讲解,到实用项目的实战演练,逐步提升你的编程能力。无论是数据科学领域的数据分析与可视化,还是 Web 开发中的网站搭建,Python 都能游刃有余。无论你是编程小白,还是想进阶的老手,这篇博文都能让你收获满满,快一起踏上 Python 编程的奇妙之旅!
2025-07-28 13:48:27 4.45MB python
1
"velodyne_reader"是一个基于Python的程序,用于读取和处理Velodyne激光雷达(LiDAR)的数据。Velodyne LiDAR是自动驾驶、机器人技术以及三维测绘等领域广泛应用的一种传感器,它能够生成高精度的3D点云数据。 在Python中,处理这种数据通常涉及到以下几个关键知识点: 1. **数据格式理解**:Velodyne LiDAR的数据通常以二进制文件的形式存储,包含时间戳、角度、距离等信息。开发者需要理解这些数据的内部结构,以便正确解析和提取所需信息。 2. **二进制文件读取**:Python的`struct`模块是处理二进制数据的关键。它允许开发者指定数据格式,然后从文件中解码或编码特定类型的值,如浮点数、整数等。 3. **点云处理**:解析出的数据会被转化为点云,这是由多个3D坐标点构成的集合。Python中的`numpy`库是处理这类数据的强大工具,可以进行快速的数学运算和数组操作。 4. **ROS(Robot Operating System)接口**:在许多情况下,Velodyne数据是通过ROS的topics发布的。ROS提供了一套标准的消息类型和API来处理传感器数据。因此,了解ROS的基本概念和如何使用`rospy`库订阅和处理消息是必要的。 5. **可视化**:为了理解和验证数据,开发者可能需要将点云数据可视化。`matplotlib`或专门的点云库如`pcl`(Point Cloud Library)的Python接口可以实现这一功能。 6. **滤波和点云处理**:原始的LiDAR数据可能存在噪声,需要进行滤波处理。这可能包括去除地面点、平滑点云、降噪等。Python库如`scipy`的信号处理模块可以用于实现这些功能。 7. **坐标转换**:在实际应用中,往往需要将LiDAR数据从传感器坐标系转换到全局坐标系。这涉及到几何变换,如旋转和平移,可以使用`numpy`的矩阵运算实现。 8. **算法应用**:点云数据可以用于创建障碍物检测、定位、SLAM(Simultaneous Localization and Mapping)等高级应用。这些算法的实现可能需要对机器学习、计算机视觉或者机器人导航有深入的理解。 9. **性能优化**:处理大量的点云数据时,性能优化至关重要。这可能涉及到数据结构的选择、并行计算的利用(例如通过`multiprocessing`库)或者GPU加速。 在"velodyne_reader-main"这个项目中,我们可以期待看到一个完整的流程,从读取二进制数据,到处理和解析,再到可能的可视化和进一步的应用。通过这个项目,开发者不仅可以掌握处理 Velodyne LiDAR 数据的方法,还可以了解到在实际的自动驾驶或机器人系统中如何集成和利用这类传感器数据。
2025-07-28 10:07:09 2KB Python
1
在本项目"jigsaw_puzzle:使用DL方法解决拼图游戏"中,我们将探讨如何运用深度学习(DL)技术来解决拼图游戏。拼图游戏是一种极具挑战性的智力游戏,通常涉及将打乱顺序的图像碎片重新组合成原始图像。在计算机科学领域,这个问题可以转化为一个图像处理和机器学习的问题,而深度学习是解决这类问题的强大工具。 我们要理解Python在深度学习中的作用。Python是一种广泛用于数据科学和机器学习的编程语言,拥有丰富的库和框架,如TensorFlow、PyTorch和Keras,这些都可以用来构建和训练深度学习模型。在这个项目中,我们很可能会使用这些框架之一来实现我们的解决方案。 深度学习的核心是神经网络,这是一种模仿人脑工作原理的计算模型,能够通过学习大量数据来自动提取特征并进行预测或决策。在拼图游戏中,神经网络可以被训练去识别图像碎片的特征,并学习如何将它们正确地匹配和排列。 在构建模型时,我们需要考虑以下关键步骤: 1. 数据预处理:我们需要准备拼图游戏的数据集,这包括原始完整图像和对应的打乱版本。数据预处理可能包括图像的缩放、归一化以及可能的增强技术,如旋转、翻转等,以增加模型的泛化能力。 2. 模型架构设计:设计一个合适的神经网络架构至关重要。可能的选择包括卷积神经网络(CNN)来处理图像数据,以及可能的递归神经网络(RNN)或长短期记忆网络(LSTM)来捕捉序列信息。也可以考虑使用Transformer架构,因其在处理序列数据时表现出色。 3. 训练过程:模型需要在带有标签的训练数据上进行迭代,通过反向传播更新权重,以最小化损失函数。损失函数可能选择均方误差(MSE)或交叉熵,以衡量预测与真实结果的差异。 4. 模型评估:使用验证集检查模型性能,防止过拟合。可以使用准确率、F1分数或其他指标来评估模型在解决拼图任务上的效果。 5. 超参数调整:通过网格搜索或随机搜索优化超参数,如学习率、批次大小和隐藏层的大小,以提高模型性能。 6. 应用部署:将训练好的模型集成到一个应用中,用户可以通过该应用上传自己的拼图,让模型尝试解决。 在"jigsaw_puzzle-main"这个文件夹中,很可能包含了项目的源代码、数据集、训练脚本和其他相关资源。通过深入研究这些文件,我们可以进一步了解模型的具体实现细节和优化策略。 这个项目展示了深度学习在解决复杂视觉问题上的潜力,同时也提醒我们,即使是简单的娱乐活动,如拼图,也可以成为推动AI技术发展的宝贵机会。通过不断的学习和实践,我们可以利用深度学习解决更多现实世界中的难题。
2025-07-27 16:46:44 17KB Python
1
全国大学名称数据表是关于我国高等教育机构的一个宝贵资源,它包含三个主要的关联表:省份表、城市表和大学名称表。这样的数据结构设计有助于更好地管理和分析我国的高等教育信息。以下将详细介绍这些知识点: 1. **数据库设计**: - **三张表关联**:在数据库设计中,关联表是一种常见的方式,用于处理多个实体之间的关系。在这个案例中,省份表、城市表和大学名称表通过某种键(如省份ID和城市ID)相互关联,确保了数据的一致性和完整性。这遵循了数据库设计中的规范化原则,可以避免数据冗余和不一致性。 2. **省份表**: - 省份表通常包含省级行政区的唯一标识(如省份ID)和名称,可能还有其他属性,如区域代码、邮政编码等。这个表为大学信息提供了地理背景,便于按地理位置进行查询和统计。 3. **城市表**: - 城市表与省份表通过省份ID关联,记录了各个城市的详细信息,如城市ID、城市名、所在省份ID等。城市信息对于了解大学的分布情况至关重要,可以帮助用户快速定位到具体的城市。 4. **大学名称表**: - 大学名称表是核心,包含了2217所大学的详细信息,如大学ID、大学名称、所在城市ID等。此外,可能还包括其他信息,如创办年份、类型(公立/私立)、学科设置等。这个表为教育研究、数据分析或招生咨询提供了基础数据。 5. **MySQL数据库系统**: - MySQL是一款广泛使用的开源关系型数据库管理系统,具有高性能、高可靠性以及易于管理的特点。在这里,它是存储和处理大学数据的平台,支持SQL查询,方便进行各种复杂的数据操作和分析。 6. **数据处理和分析**: - 使用MySQL,我们可以执行多种数据操作,如查询所有位于特定省份的大学、统计各省份的大学数量、找出拥有最多大学的城市等。这有助于政策制定者、教育工作者和研究人员深入理解我国高等教育的格局。 7. **数据应用**: - 这些数据可以用于多种应用场景,如教育政策研究、高校排名、学生择校指导、区域教育资源评估等。同时,它们也可以作为开发教育类应用的基础,如地图上的大学查找工具、高考志愿填报辅助系统等。 8. **数据导入和管理**: - 要将压缩包中的数据导入MySQL,用户需要先解压文件,然后使用SQL的`LOAD DATA INFILE`命令或者数据库管理工具(如phpMyAdmin)将数据导入到相应的表中。之后,应定期备份和维护数据,以防止数据丢失或损坏。 总结来说,全国大学名称数据表是一个综合性的高等教育信息库,通过MySQL数据库进行管理和查询,其关联的三张表提供了丰富的教育地理信息。这样的数据集对于教育领域的研究、决策支持和信息服务具有很高的价值。
2025-07-27 13:15:02 25KB 大学名称
1
这是一本关于astroML的书,全名为Statistics, Data Mining, and Machine Learning in Astronomy,用python写的Machine Learning for Astrophysics。
2025-07-26 21:45:14 102.53MB 机械学习 python
1
python whl离线安装包 pip安装失败可以尝试使用whl离线安装包安装 第一步 下载whl文件,注意需要与python版本配套 python版本号、32位64位、arm或amd64均有区别 第二步 使用pip install XXXXX.whl 命令安装,如果whl路径不在cmd窗口当前目录下,需要带上路径 WHL文件是以Wheel格式保存的Python安装包, Wheel是Python发行版的标准内置包格式。 在本质上是一个压缩包,WHL文件中包含了Python安装的py文件和元数据,以及经过编译的pyd文件, 这样就使得它可以在不具备编译环境的条件下,安装适合自己python版本的库文件。 如果要查看WHL文件的内容,可以把.whl后缀名改成.zip,使用解压软件(如WinRAR、WinZIP)解压打开即可查看。 为什么会用到whl文件来安装python库文件呢? 在python的使用过程中,我们免不了要经常通过pip来安装自己所需要的包, 大部分的包基本都能正常安装,但是总会遇到有那么一些包因为各种各样的问题导致安装不了的。 这时我们就可以通过尝试去Python安装包大全中(whl包下载)下载whl包来安装解决问题。
2025-07-26 15:52:21 2.54MB python
1
随着网络科技的飞速发展,智能文献管理系统成为了企业和学术机构等管理文献信息的重要工具。这类系统利用先进的数据分析技术,不仅可以提高文献信息的管理和检索效率,还可以提升文献的质量,进而优化研究工作和信息检索过程。本文介绍了一款基于Python语言开发的智能文献管理系统,该系统采用MySQL作为后台数据库进行数据存储,并具备用户管理、文献类型管理、文献信息管理、文献注释管理以及在线论坛等功能模块。 该系统的设计初衷在于提供一个易于操作且具备高稳定性的文献管理平台。在设计过程中,特别注意了数据库的安全性、一致性、稳定性和可靠性问题。系统的用户界面简洁明了,操作简单,使其能够快速地投入实际应用。 智能文献管理系统的研究和应用背景及其意义体现在:随着信息化技术的不断进步,文献管理的重要性日益突出。传统的文献管理方式存在检索效率低下、管理流程繁琐、数据安全性难以保障等缺陷。智能文献管理系统通过自动化处理和智能化分析技术,有效提高了文献管理的智能化和自动化程度,减少了人工干预,从而提升了管理效率。同时,系统还能通过数据加密和权限控制等措施保障数据安全。 智能文献管理系统还能够为图书馆提供更加全面的服务。它实现了文献的数字化存储与管理,并通过智能化分析和个性化推荐技术,提供更精准的文献推荐服务。此外,该系统能够与图书馆系统、数据库系统等进行对接,实现资源共享和协同工作,进而提高图书馆的服务水平。 在国内外研究现状方面,智能文献管理系统已经成为图书馆、科研机构和高校等管理文献资源的重要工具。系统通常包括文献检索、分类、整理和归档等功能,有效提高了文献管理效率和质量。同时,也有学者开始探索将人工智能技术应用于智能文献管理系统中,以提高其智能化和准确性。 然而,智能文献管理系统仍面临一些挑战和问题,包括提高系统智能化程度和准确性、整合不同类型的文献资源以及保障用户隐私和数据安全等。随着技术不断进步,未来智能文献管理系统将向着更加智能化、个性化、高效化的方向发展,满足用户多样化的需求。 在研究内容方面,基于Python开发的智能文献管理系统采用B/S架构,并引入基于用户相似度的协同过滤算法,以提供个性化推荐功能。系统后端负责主要的数据处理和管理任务,包括数据的存储、处理和查询等功能。 总结而言,智能文献管理系统的发展势在必行,它不仅能够满足现代信息管理的需求,还能促进图书馆和科研机构等的数字化和智能化转型。通过不断研究和改进,智能文献管理系统将成为数字化时代的重要工具之一,为用户提供更加高效、便捷的服务。
1
基于python的深度学习的人脸识别,识别率非常高,是一个国外友人写的,识别率非诚高
2025-07-26 14:37:06 26.58MB python 深度学习 开发语言 机器学习
1
Django是基于Python的一种开源Web框架,用于快速开发安全且可维护的网站。这个"Django-2.2.5.tar.gz"文件是一个压缩包,包含了Django 2.2.5版本的所有源代码和相关资源。这个版本是在Django框架的发展历程中的一个重要里程碑,它带来了许多增强的功能和性能优化。 在Python Web开发中,Django因其MVC(模型-视图-控制器)架构模式和ORM(对象关系映射)系统而广受好评。它的核心特性包括: 1. **模型(Models)**:Django允许开发者通过定义简单的Python类来创建数据库表。这些模型提供了数据验证、管理命令和查询接口,极大地简化了数据库操作。 2. **视图(Views)**:视图负责处理HTTP请求并返回HTTP响应。它们可以是函数或类,根据用户请求的数据和行为来生成相应的页面。 3. **模板(Templates)**:Django的模板语言允许开发者创建动态HTML页面,通过变量替换和控制结构实现动态内容。模板与视图协作,根据数据生成最终的HTML响应。 4. **URL路由(URL Routing)**:Django的URL配置系统允许开发者将URL模式映射到特定的视图,使得URL设计既简洁又可读。 5. **内置身份认证系统(Built-in Authentication)**:Django提供用户注册、登录、权限管理和会话管理功能,方便开发者构建需要用户认证的应用。 6. **ORM和数据库管理(Database Abstraction and Management)**:Django的ORM层使得开发者无需编写SQL,即可进行数据库操作。它支持多种数据库,如SQLite、MySQL、PostgreSQL等。 7. **表单处理(Forms)**:Django提供了强大的表单处理机制,能够自动生成HTML表单、处理POST数据,以及进行数据验证。 8. **性能和缓存(Performance and Caching)**:Django支持多种缓存策略,包括页面级缓存、数据库查询缓存等,以提高应用性能。 9. **国际化和本地化(Internationalization and Localization)**:Django内置了强大的国际化和本地化支持,允许开发者轻松地为不同地区创建多语言网站。 10. **安全性(Security)**:Django注重安全性,内置了许多安全防护措施,如防止XSS和CSRF攻击,以及强制使用HTTPS。 Django 2.2.5的发布可能包括了以下改进和修复: - 修复了一些已知的bug,提高了软件的稳定性。 - 可能增加了新功能或对现有功能进行了优化。 - 更新了依赖库,以确保与最新技术的兼容性。 - 对安全问题进行了处理,增强了系统的安全性。 安装Django 2.2.5时,首先需要解压"Django-2.2.5.tar.gz",然后使用Python的pip工具进行安装。解压后,你可以查看README文件获取更多安装和配置信息。在开发环境中,通常会通过创建虚拟环境来隔离项目依赖,避免全局Python环境的污染。 Django是一个强大且功能丰富的Web框架,适用于构建各种规模的Web应用,从简单的博客系统到复杂的电子商务平台。"Django-2.2.5.tar.gz"这个文件是学习和使用Django的一个良好起点,开发者可以通过这个版本深入了解Django的工作原理,并利用其特性构建高效、安全的Web应用。
2025-07-26 08:13:02 8.58MB Python  Django
1