CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-11-24 16:21:19 14KB matlab
1
利用MATLAB粒子群算法求解电动汽车充电站选址定容问题:结合交通流量与道路权重,IEEE33节点系统模型下的规划方案优化实现,基于粒子群算法的Matlab电动汽车充电站选址与定容规划方案,电动汽车充电站 选址定容matlab 工具:matlab 内容摘要:采用粒子群算法,结合交通网络流量和道路权重,求解IEEE33节点系统与道路耦合系统模型,得到最终充电站规划方案,包括选址和定容,程序运行可靠 ,选址定容; 粒子群算法; 交通网络流量; 道路权重; 充电站规划方案; IEEE33节点系统; 道路耦合模型; MATLAB程序。,Matlab在电动汽车充电站选址定容的优化应用
2025-10-19 18:01:50 1017KB 柔性数组
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-05-12 19:40:40 2.96MB matlab
1
Matlab武动乾坤上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-05-07 21:10:05 3.28MB matlab
1
粒子群优化算法(Particle Swarm Optimization, PSO)是一种基于群体智能的全局优化方法,由Kennedy和Eberhart于1995年提出。在MATLAB中,PSO被广泛应用于函数极值优化问题,寻找函数的全局最小值或最大值。本篇将详细介绍如何在MATLAB中使用PSO实现这一功能。 理解PSO的基本原理至关重要。PSO模拟了鸟群寻找食物的过程,每个鸟(粒子)代表一个可能的解,其位置和速度决定了它在搜索空间中的移动。每个粒子有两个关键参数:位置(Position)和速度(Velocity)。在每一代迭代中,粒子会根据自身的最优位置(Personal Best, pBest)和整个群体的最优位置(Global Best, gBest)调整自己的速度和位置,以期望找到全局最优解。 在MATLAB中,实现PSO的基本步骤如下: 1. **初始化**:设定粒子的数量、搜索空间范围、速度上限、惯性权重、学习因子c1和c2等参数。创建一个随机初始位置和速度矩阵,分别对应粒子的位置和速度。 2. **计算适应度值**:对于每一个粒子,计算其对应位置的函数值,这通常是目标函数的负值,因为我们要找的是最小值。适应度值越小,表明该位置的解越优。 3. **更新pBest**:比较当前粒子的位置与历史最优位置pBest,如果当前位置更优,则更新pBest。 4. **更新gBest**:遍历所有粒子,找出全局最优位置gBest,即适应度值最小的位置。 5. **更新速度和位置**:根据以下公式更新每个粒子的速度和位置: ```matlab v(i) = w * v(i) + c1 * rand() * (pBest(i) - x(i)) + c2 * rand() * (gBest - x(i)); x(i) = x(i) + v(i); ``` 其中,w是惯性权重,c1和c2是学习因子,rand()生成的是[0,1]之间的随机数。 6. **约束处理**:如果粒子的新位置超出搜索空间范围,需要进行约束处理,将其限制在指定范围内。 7. **重复步骤2-6**,直到满足停止条件(如达到最大迭代次数、目标精度等)。 在提供的压缩包文件d6393f629b4b4a7da0cc9e3a05ba01dd中,很可能包含了一个MATLAB函数或脚本,实现了上述步骤的PSO优化过程。通过查看和运行这个文件,你可以直观地了解PSO在MATLAB中的实际应用。 值得注意的是,PSO算法的性能受多个参数影响,包括粒子数量、学习因子、惯性权重等。不同的参数设置可能导致不同的优化效果,因此在实际应用中,通常需要通过多次实验来调整这些参数,以达到最佳的优化性能。 MATLAB中的PSO算法是一种强大的全局优化工具,尤其适合解决多模态和高维优化问题。通过理解其基本原理和实现步骤,你可以有效地利用这个算法来解决各种实际问题。在实际应用中,结合具体问题的特点进行参数调整和优化策略的设计,是提高PSO效率的关键。
2024-08-07 01:24:20 6.2MB matlab 粒子群算法( 极值优化
1
参考文献:   [1]  刘自发,于普洋,李颉雨.  计及运行特性的配电网分布式电源与广义储能规划    [J].  电力自动化设备,  2023,  43  (03):  72-79.     [2]  任智君,郭红霞,杨苹,等.  含高比例可再生能源配电网灵活资源双层优化配置    [J].  太阳能学报,  2021,  42  (09):  33-38.     [3]  高红均,刘俊勇.  考虑不同类型DG和负荷建模的主动配电网协同规划    [J].  中国电机工程学报,  2016,  36  (18):  4911-4922+5115.           分析系统灵活性供需关系,建立灵活资源运行-规划联合优化双层配置模型。运行层引入灵活性不足率作为系统灵活性评价指标,将网损和弃风弃光量计入经济惩罚,以系统年运行成本最优为目标;规划层引入系统综合安全性指标对系统安全性进行评估,以系统年综合成本最优为目标。采用粒子群优化算法对双层配置模型进行求解。最后,利用IEEE 33节点配网系统对算例进行仿真,结果验证了所提运行-规划联合双层配置模型能有效减少网损和
2024-04-15 18:22:59 3.41MB matlab 粒子群算法
1
多目标粒子群算法的原理以及matlab代码实现,参考文献《基于改进多目标粒子群算法的配电网储能选址定容》。 代码注释清晰,结构有条理,非常适合用来学习多目标优化。代码运行有任何问题都可以帮忙解决。 压缩包中含有两部分内容: 1.改进多目标粒子群算法的原理,计算流程的超详细介绍,以及完整matlab代码的获取方式。 2.单目标粒子群算法的matlab完整程序PSO.m,可以直接运行
1
基于MATLAB编程,利用PSO寻找函数全局最优(可自行扩展); 代码注释多,简化强,仅一重循环,便于理解PSO算法编程
2022-12-26 11:25:24 2KB MATLAB 粒子群算法 PSO 优化问题
1