相关博文请查看:https://blog.csdn.net/weixin_44044411/article/details/107969423,本视频为博主上传的,此博文的配套仿真视频
2024-09-19 13:59:55 3.97MB MPC 无人驾驶
1
在电力电子领域,三相逆变器是一种广泛应用的设备,能够将直流电转换为交流电。本主题聚焦于三相逆变器的控制策略,特别是采用模型预测控制(MPC,Model Predictive Control),这是一种先进的控制方法,具有优化性能和前瞻性的特点。在这个场景下,MPC与离散化函数相结合,用于对逆变器的动态行为进行精确预测和高效控制。 模型预测控制的核心在于它的预测能力。它不是基于当前状态进行控制决策,而是基于未来一段时间内的系统行为预测。通过解决一个优化问题,MPC控制器能够找到在满足约束条件下使某一性能指标最小化的未来控制序列。这使得MPC特别适合处理非线性、多变量、有约束的控制问题,例如三相逆变器的电压和电流控制。 在实际应用中,三相逆变器的状态空间方程通常是连续的。然而,由于实际控制器工作在离散时间域,需要将这些连续模型离散化。"cont2dis.m"可能是实现这一转换的MATLAB脚本。离散化过程通常采用零阶保持(ZOH,Zero-Order Hold)或线性插值等方法,确保离散模型尽可能接近原始连续模型,同时保持控制器的稳定性。 "canbus.m"可能涉及到通信协议,如CAN总线,用于在逆变器控制系统和其他设备之间交换数据。在现代电力电子系统中,实时通信是至关重要的,因为它允许控制器获取反馈信息并迅速调整输出。 "Simscape Electrical"的仿真模型文件"MPC_3Phase_Inverter.slx"和".slxc"是MATLAB/Simulink环境下的三相逆变器模型,包括MPC控制器的配置。用户可以通过这个模型观察系统行为,验证控制策略的效果,进行参数调整和故障模拟。 "HIL MPC+DSP"可能指的是硬件在环(HIL,Hardware-in-the-Loop)测试,结合了MPC和数字信号处理器(DSP)。在HIL测试中,实际硬件与仿真模型交互,可以更准确地评估控制算法在真实系统中的性能,确保在物理设备上实施前的可靠性。 总结来说,这个主题涵盖了从三相逆变器的模型预测控制设计,到模型离散化,再到Simulink仿真和硬件在环测试的全过程。通过深入理解和掌握这些知识点,可以有效地设计出高效、稳定的三相逆变器控制系统。
2024-09-07 11:22:29 137KB simulink仿真模型
1
一种应用于多车队列控制的分布式模型预测控制算法,该算法能够有效地协调三辆车的行驶,以实现车队的高效和安全行驶。文中详细阐述了算法的原理、实现步骤以及在实际场景中的应用效果。适用于对自动驾驶技术和车辆控制系统感兴趣的工程师、研究人员和学生。使用场景包括但不限于自动驾驶车辆的研发、智能交通系统的构建以及车辆控制算法的教学和研究。目标是提供一个有效的解决方案,以提高多车队列在复杂交通环境中的稳定性和协同性。 关键词标签:分布式控制 模型预测控制 多车队列 自动驾驶
1
深入分析了基于动态车辆模型的百度Apollo平台上的线性二次调节器(LQR)和模型预测控制(MPC)横向控制算法。通过对这两种算法的比较研究,揭示了它们在处理车辆横向控制问题时的性能差异和适用场景。文章提供了详细的算法原理、仿真结果以及在实际车辆上的测试数据,为自动驾驶车辆的横向控制提供了有价值的参考。 适用人群: 本研究适合自动驾驶技术、控制理论、车辆工程等领域的专业人士,以及对智能车辆控制和自动驾驶系统设计感兴趣的学生和研究人员。 使用场景: 研究成果可以应用于自动驾驶车辆的横向控制策略设计,提高车辆的行驶稳定性和安全性,同时为自动驾驶系统的进一步优化提供理论依据。 目标: 旨在评估和优化自动驾驶车辆的横向控制算法,推动自动驾驶技术的发展,增强智能交通系统的安全性和可靠性。 关键词标签: 动态车辆模型 百度Apollo LQR MPC横向控制
2024-07-18 14:50:33 901KB 毕业设计 MPC
1
用MPC算法来控制弹簧质量阻尼系统。首先建立弹簧质量阻尼系统的模型,然后将连续时间模型转换成离散模型,推倒预测和优化方程,将控制问题转化成标准二次型问题,分别使用解析法和数值法两种优化求解方式,最后用Matlab进行了单位阶跃响应MPC控制仿真。配合博客:模型预测控制(MPC)九:弹簧质量阻尼的MPC仿真,在matlab 2016a实测可运行
2024-05-23 20:20:26 2KB matlab MPC 模型预测控制
matlab语言实现基于运动学的MPC控制算法
2024-05-12 17:29:18 1.24MB matlab
1
自动驾驶规划控制-nmpc路径规划和mpc路径跟踪 matlab和simulink联合仿真,非线性mpc路径规划,线性mpc路径跟踪
2024-05-08 10:03:22 294KB matlab 自动驾驶
1
(1) 建立自动驾驶电动汽车纵向动力学仿真模型。以某自动驾驶电动汽车为研究对 象, 分别在Matlab/Simulink 和CarSim 环境下搭建了纵向动力学简化模型和整车动力学 模型, 结合模型分析电动汽车的纵向动力学特性, 通过对比实车试验数据与仿真结果, 验证了模型的正确性。 (2) 设计了车速控制系统的整体框架。为实现不同行驶工况下车速的准确控制, 采 用分层式结构设计控制系统, 从车速控制需求出发, 制定了定速与跟随两种控制模式, 细分行驶工况并合理约束其中的关键参数, 为后续速度控制算法设计打下基础。 (3)采用分层式结构设计车速控制系统。上层控制器根据目标车速决策出期望加速 度, 通过建立控制对象模型、车间运动学模型、安全车间距模型, 综合考虑安全性、 舒适性、经济性、跟随性四个性能指标, 结合MPC 模型预测优化控制算法建立目标函 数, 并将其转化为二次优化问题, 求解出汽车行驶的期望加速度。 (4)基千Matlab/Simulink 与CarSim 联合仿真平台搭建了电动汽车速度控制系统, 针对典型的纵向行驶工况, 对所设计的车速控制策略进行仿真验证。
2024-05-04 21:34:42 36.28MB matlab 自动驾驶 MPC 速度控制
1
MPC避障 描述 MPC(模型预测控制)实现使用Casadi Python软件包进行数值优化,并使用{numpy + matplotlib}进行可视化。 完整的移动机器人(Mecanum轮式全向移动机器人(MWOMR))用作实现系统。 此外,通过根据障碍物的参数添加不等式约束,可以避免障碍物。 通过动画示例辅助回购,以实现更好的可视化。 卡萨迪(Casadi): ://web.casadi.org/ 内容 mpc_code.py →MPC的主要Python脚本 simulation_code.py →一个帮助程序文件,用于实现MPC代码中使用的可视化 main.py →要运行的代码 笔记: 您应该运行main.py 如下插入目标点:[x方向,y方向,角度],例如:[10,10,pi] 要求 在运行代码之前,请确保您在计算机上安装了Python3.5 +和以下软件包:
2024-05-04 14:11:59 3.58MB Python
1
基于模型预测控制(MPC)无人驾驶汽车轨迹跟踪控制算法,基于MATLAB/simulink与carsim联合仿真,包含cpar,par,slx文件,支持MATLAB2018和carsim2019版本,先导入capr文件,然后发送到simulink,可支持修改代码,运用S-Function函数编写。 四轮转向汽车轨迹跟踪模型。 基于模型预测控制(MPC)无人驾驶汽车轨迹跟踪控制算法,基于MATLAB/simulink与carsim联合仿真,包含cpar,par,slx文件,支持MATLAB2018和carsim2019版本,先导入capr文件,然后发送到simulink,可支持修改代码,运用S-Function函数编写。 四轮转向汽车轨迹跟踪模型。
2024-04-28 14:08:31 629KB matlab carsim simulink 无人驾驶车辆
1