将克里金(Kriging)模型作为代理模型与MOEA-D多目标优化算法相结合的方法来解决复杂工程优化问题。首先解释了克里金模型作为一种高级插值工具的特点及其在Python中的简单实现方式,强调它能够有效降低每次目标函数计算的成本。随后阐述了MOEA-D算法的工作原理,特别是它如何通过权重向量将复杂的多目标问题分解为若干个较为简单的单目标子问题。最后,文章展示了这两种技术是如何协同工作的,即利用代理模型快速筛选潜在优质解,仅对最有希望的部分进行真实的昂贵评估,并据此不断更新改进模型,从而大幅提高优化效率。 适合人群:从事工程设计、数据分析以及需要处理多目标优化问题的研究人员和技术人员。 使用场景及目标:适用于那些面临高昂计算成本和多个相互冲突目标的优化场景,如汽车设计中既追求燃油经济性又要求高性能的动力系统优化等问题。目的是帮助用户掌握一种高效的优化手段,能够在较短时间内获得满意的优化结果。 阅读建议:对于想要深入了解这一领域的读者来说,应该关注文中提到的具体实现细节,尤其是关于如何设置参数以确保模型不过拟合并保持良好的泛化能力方面的指导。此外,还应注意MOEA-D中权重向量的选择策略,因为这对最终优化效果有着重要影响。
2025-12-23 10:52:18 494KB
1
moea/d在多目标优化领域里是一类比较经典的算法
2021-08-17 15:18:40 1.56MB 多目标优化 moea/d
1
Contents are :DHRS-MOEAD EI e-MOEA GrEA HypE I-DBEA MOEAD-DE MOEAD-DRA MOEAD-M2M NSGA-II NSGA-III NSLS PICEA-g SIEA SPEA2 SPEA2-SDE
2019-12-21 21:28:07 101.92MB MOEA/D算法 EAG MOEA MOEAD
1
用matlab实现moea/d算法,有非常详细的注释,而且有zdt1,zdt2等测试代码
2019-12-21 20:10:45 1.41MB 算法
1