机器学习算法Python实现——线性回归,逻辑回归,BP神经网络 机器学习算法Python实现 一、线性回归 1、代价函数 2、梯度下降算法 3、均值归一化 4、最终运行结果 5、使用scikit-learn库中的线性模型实现 二、逻辑回归 1、代价函数 2、梯度 3、正则化 4、S型函数(即) 5、映射为多项式 6、使用的优化方法 7、运行结果 8、使用scikit-learn库中的逻辑回归模型实现 逻辑回归_手写数字识别_OneVsAll 1、随机显示100个数字 2、OneVsAll 3、手写数字识别 4、预测 5、运行结果 6、使用scikit-learn库中的逻辑回归模型实现 三、BP神经网络 1、神经网络model 2、代价函数 3、正则化 4、反向传播BP 5、BP可以求梯度的原因 6、梯度检查 7、权重的随机初始化 8、预测 9、输出结果 四、SVM支持向量机 1、代价函数 2、Large Margin 3、SVM Kernel(核函数) 4、使用中的模型代码 5、运行结果 五、K-Means聚类算法 1、聚类过程 2、目标函数 3、聚类中心的选择 4、聚类个数K的选择
2025-05-05 19:54:36 34.1MB 神经网络 机器学习 python 线性回归
1
聚类是机器学习领域的一种无监督学习方法,主要用于数据挖掘,尤其在数据分析、模式识别、图像分割等场景中广泛应用。本资源包含一个关于聚类算法的PPT和使用Python实现的可运行代码,旨在帮助理解并实践聚类过程。 聚类的目标是将数据集中的对象依据相似性原则划分成不同的组,每个组称为一个簇。簇内的对象彼此相似,而簇间的对象则相异。聚类算法不依赖于预先设定的类别,而是通过数据本身的特性来发现潜在的结构。 PPT可能涵盖以下知识点: 1. 聚类的基本概念:包括定义、目的、类型(层次聚类、划分聚类、基于密度的聚类、基于模型的聚类等)。 2. 聚类的质量度量:如轮廓系数、Calinski-Harabasz指数、Davies-Bouldin指数等,用于评估聚类效果的好坏。 3. 常见聚类算法介绍: - K-Means:是最常用的聚类算法之一,基于距离度量,通过迭代优化分配和中心点。 - 层次聚类(Agglomerative Clustering和Divisive Clustering):分为自底向上和自顶向下的策略,通过合并或分裂节点构建层次结构。 - DBSCAN(基于密度的聚类):能发现任意形状的簇,对噪声有较好的抵抗能力。 - Mean Shift:寻找密度峰值的聚类方法,适合处理非凸形状的簇。 - Gaussian Mixture Models (GMM):基于概率模型的聚类,假设数据来自高斯混合分布。 接下来,Python实现的代码可能包括这些算法的实例和应用: 1. K-Means代码实现:会包含初始化质心、分配数据点、更新质心等步骤,以及可能使用的库,如scikit-learn中的KMeans类。 2. DBSCAN代码实现:涉及计算邻域、找到核心对象、扩展簇的过程,可能会使用到scikit-learn中的DBSCAN类。 3. 其他算法的实现:例如层次聚类中的linkage函数,GMM的fit和predict方法等。 实际代码中还会涉及数据预处理步骤,如标准化、降维(PCA)等,以确保聚类结果不受特征尺度或维度的影响。此外,代码可能还包括可视化部分,使用matplotlib或seaborn库展示聚类结果,如散点图、聚类树等。 这个资源提供了一个全面了解和实践聚类算法的平台,不仅理论讲解清晰,还有实战代码可供学习和参考。无论是初学者还是有一定经验的开发者,都能从中获益,提升对聚类的理解和应用能力。
2025-05-05 10:47:08 8.43MB 聚类 机器学习
1
花卉识别系统是一种利用计算机视觉和机器学习技术来自动识别和分类不同种类花卉的系统。该系统的核心是基于深度学习模型ResNet18的训练网络,通过图像识别技术,用户上传的花卉图片可以被准确分类。 深度学习是一种模拟人脑处理信息的方式,通过构建复杂的神经网络结构来分析数据。在花卉识别系统中,ResNet18作为卷积神经网络(CNN)的一种,擅长处理图像数据。ResNet18通过引入残差学习框架,使得网络能够训练更深的层次结构,从而获得更高效的特征提取能力。 Python是一种广泛使用的高级编程语言,它具有丰富的数据科学和机器学习库,如TensorFlow、Keras和PyTorch等。Python简洁易读的语法和强大的社区支持使其成为开发机器学习模型的理想选择。在花卉识别系统中,Python被用来编写代码、搭建模型以及与用户界面(UI)进行交互。 用户界面(UI)是用户与系统交互的前端部分,它负责展示信息并接收用户的输入。在花卉识别系统中,UI设计需要简洁直观,使得非专业人士也能轻松使用。一个好的UI不仅可以提升用户体验,还能够减少操作错误,提高系统的整体效率。 花卉识别系统的开发过程包括数据收集、预处理、模型训练、评估和部署等多个步骤。需要收集大量不同种类的花卉图片作为训练数据。接下来,对这些图片进行必要的预处理,如缩放、归一化等,以适应模型输入的要求。然后,使用ResNet18模型进行训练,并不断调整参数以优化性能。训练完成后,对模型进行评估,确保其具有良好的识别准确率。将训练好的模型部署到一个用户友好的UI中,供用户使用。 在使用花卉识别系统时,用户只需上传一张花卉图片,系统便会自动处理图片并输出识别结果,告诉用户所上传的花卉种类。这个过程主要依赖于模型的预测能力,而UI则负责展示预测结果和提供用户交互。 花卉识别系统的应用前景非常广泛,它不仅能够帮助植物学家和园艺师进行科学研究和植物养护,还能为普通爱好者提供一个学习和欣赏花卉的平台。此外,随着智能手机和移动应用的普及,基于移动设备的花卉识别应用也将成为可能,进一步扩大了系统的使用范围。 花卉识别系统通过结合深度学习模型、Python编程语言和用户友好的界面设计,为用户提供了一个高效、便捷的花卉分类工具。这个系统在教育、科研和日常生活等多个领域都具有重要的应用价值。
2025-05-04 23:14:35 245.9MB 机器学习 深度学习
1
内容概要:本文详细介绍了如何通过麻雀算法(Sparrow Search Algorithm, SSA)优化最小二乘支持向量机(LSSVM),以提升其在多输入单输出(MISO)回归预测任务中的性能。首先阐述了LSSVM的基本原理及其在处理复杂非线性数据方面的优势,接着讨论了传统LSSVM存在的超参数优化难题。然后重点介绍了麻雀算法的特点及其在优化LSSVM超参数方面的应用,展示了如何通过全局搜索能力克服局部最优问题,提高预测精度和泛化能力。最后,通过多个实际案例验证了该方法的有效性,并提供了完整的Python代码实现,涵盖从数据预处理到模型评估的全过程。 适合人群:对机器学习尤其是回归分析感兴趣的科研人员和技术开发者,以及希望深入了解LSSVM和麻雀算法优化机制的研究者。 使用场景及目标:①适用于需要高精度预测的应用领域,如金融预测、气象预报、能源需求预测等;②通过优化LSSVM的超参数,提高模型的预测精度和泛化能力;③提供一个易于使用的回归预测工具,便于快速部署和应用。 其他说明:本文不仅探讨了理论层面的内容,还给出了具体的代码实现,使读者能够在实践中理解和掌握相关技术。同时,文中提到
1
内容概要:本文介绍了一种利用灰狼优化算法(GWO)优化最小二乘支持向量机(LSSVM)参数的方法。首先解释了GWO的基本原理,即通过模拟狼群捕猎的行为来寻找最优解。文中详细展示了如何将GWO应用于LSSVM的两个重要参数——惩罚参数c和核函数参数g的优化过程中。接着提供了具体的Python和Matlab代码实现,包括适应度函数的设计、狼群位置的更新规则以及完整的优化流程。此外,还给出了实际案例的应用,如轴承故障数据集的预测精度显著提高,并讨论了一些常见的注意事项和技术细节。 适合人群:从事机器学习研究或应用的技术人员,尤其是对超参数优化感兴趣的开发者。 使用场景及目标:适用于需要高效优化LSSVM模型参数的场景,旨在帮助研究人员减少手动调参的时间成本,同时获得更好的模型性能。 其他说明:文中提供的代码可以直接在Windows系统上运行,用户只需准备好自己的数据集并适当调整相关参数即可使用。对于初学者来说,这是一个非常友好的入门级项目,能够快速上手并看到实际效果。
2025-05-04 08:46:54 318KB 机器学习 参数优化 Windows系统
1
基于CNN的文本分类代码包,​CNN(Convolutional Neural Network)即卷积神经网络,本质上,CNN就是一个多层感知机,只不过采用了局部连接和共享权值的方式减少了参数的数量,使得模型更易于训练并减轻过拟合。在文本分类中,参考论文Convolutional Neural Networks for Sentence Classification https://arxiv.org/abs/1408.5882中的模型 ​对于单词的嵌入向量,有四种处理方法 1. 使用随机嵌入并在训练时进行更新; 2. 使用已有的嵌入向量,在训练时不作为参数更新; 3. 使用已有的嵌入向量,在训练时作为参数更新; 4. 结合2和3,将单词嵌入到两个通道的嵌入向量中,其中一个嵌入向量为固有属性,另一个嵌入向量作为参数进行更新。
2025-04-29 21:46:01 18.86MB nlp 卷积神经网络 机器学习
1
本案例介绍命名实体识别(NER)任务的背景、HMM的原理以及如何将数据应用于序列标记问题,帮助同学们建立坚实的理论基础。 同学们可以通过这个案例学习序列标记问题和HMM的理论基础,从而建立机器学习的核心知识,利用HMM知识去解决实际NER问题,从而加深对理论的理解和应用能力。
2025-04-29 10:51:11 285KB 机器学习
1
内容概要:本文介绍了基于RIME-DBSCAN的数据聚类可视化方法及其在Matlab中的实现。RIME-DBSCAN是一种改进的密度聚类算法,通过调整密度分布和距离计算,解决了传统DBSCAN算法在高维数据和复杂数据结构中的局限性。该方法通过Matlab平台实现了数据聚类,并结合可视化技术展示了聚类结果,帮助用户直观理解数据的分布和聚类效果。文章详细描述了项目的背景、目标、挑战、创新点及应用领域,并提供了具体的模型架构和代码示例。 适合人群:对数据挖掘、机器学习及聚类算法有一定了解的研究人员和技术人员,尤其是从事数据分析、数据可视化工作的专业人士。 使用场景及目标:①适用于处理高维数据和复杂数据结构的聚类任务;②通过可视化工具展示聚类结果,帮助用户理解数据分布和噪声点位置;③优化数据分析过程,为医疗、金融、电商、社交网络等领域提供数据支持。 其他说明:本文不仅介绍了RIME-DBSCAN算法的理论基础,还提供了具体的Matlab代码实现,便于读者动手实践。同时,文中提到的降维技术和参数选择策略也是项目中的重点和难点,需要读者在实践中不断探索和优化。
2025-04-29 09:45:43 32KB Matlab 数据聚类 可视化 高维数据处理
1
机器学习西瓜书学习笔记第1-3章,附第二章模型评估与选择/第三章线性模型算法代码。对应的笔记可参考相应博客。 深入探讨了经验误差与过拟合等关键概念,旨在为读者提供对机器学习中常见问题的基本理解。随后,本章转向模型评估的领域,系统阐述了评估方法与度量方法。评估方法强调了对数据集的全面利用,而度量方法则聚焦于构建模型评价的量化标准。进一步地,本章介绍了校验方法,这一环节对于确保模型评估结果的准确性与可信度至关重要。最后,本章从理论角度出发,对学习器的性能进行了深入分析,旨在为读者揭示学习器行为背后的原理与机制。 一种统计学方法,用于建模和分析两个变量之间的关系:一个因变量和一个或多个自变量。它试图找到自变量和因变量之间的线性关系,这种关系通常用一个方程来表示,这个方程通常被称为线性回归方程。
2025-04-28 20:25:51 1.4MB 机器学习
1
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机如何模拟或实现人类的学习行为,以获取新的知识或技能,并重新组织已有的知识结构,从而不断改善自身的性能。机器学习是人工智能的核心,也是使计算机具有智能的根本途径。 应用: 机器学习在各个领域都有广泛的应用。在医疗保健领域,它可用于医疗影像识别、疾病预测、个性化治疗等方面。在金融领域,机器学习可用于风控、信用评分、欺诈检测以及股票预测。此外,在零售和电子商务、智能交通、生产制造等领域,机器学习也发挥着重要作用,如商品推荐、需求预测、交通流量预测、质量控制等。 优点: 机器学习模型能够处理大量数据,并在相对短的时间内产生可行且效果良好的结果。 它能够同时处理标称型和数值型数据,并可以处理具有缺失属性的样本。 机器学习算法如决策树,易于理解和解释,可以可视化分析,容易提取出规则。 一些机器学习模型,如随机森林或提升树,可以有效地解决过拟合问题。 缺点: 机器学习模型在处理某些特定问题时可能会出现过拟合或欠拟合的情况,导致预测结果不准确。 对于某些复杂的非线性问题,单一的机器学习算法可能难以有效地进行建模和预测。 机器学习模型的训练通常需要大量的数据和计算资源,这可能会增加实施成本和时间。 总的来说,机器学习虽然具有许多优点和应用领域,但也存在一些挑战和限制。在实际应用中,需要根据具体问题和需求选择合适的机器学习算法和模型,并进行适当的优化和调整。
2025-04-27 18:47:11 218KB 机器学习
1