内容概要:本文介绍了一个基于MATLAB 2018B的语音信号降噪和盲源分离的图形用户界面(GUI)工具箱。该工具箱集成了多种降噪技术和盲源分离算法,如维纳滤波、小波降噪、高通滤波、带通滤波等。文中详细描述了各个滤波器的工作原理及其MATLAB实现代码片段,包括自研的混合滤波算法和盲源分离模块。此外,作者分享了一些实用技巧,如如何避免实时播放时的声卡报错、频谱刷新丢帧等问题,并提供了具体的解决方案。最后,作者展示了该工具箱的实际应用效果,如处理前后音频的对比播放,以及在不同场景下的表现。 适合人群:从事语音信号处理的研究人员和技术爱好者,尤其是熟悉MATLAB编程的用户。 使用场景及目标:①用于研究和实验不同的语音降噪算法;②评估和比较各种滤波器的效果;③探索盲源分离技术的应用潜力;④提供一个便捷的平台进行语音信号处理的教学和演示。 其他说明:该工具箱不仅实现了常见的降噪算法,还包括一些创新性的改进,如自适应阈值的小波降噪和基于频谱熵的混合滤波策略。这些特性使得该工具箱在实际应用中表现出色,特别是在处理非稳态噪声方面。
2025-05-20 13:25:15 805KB
1
通过蓝牙控制称重,重量超过最大值会惊醒语音警告,通过蓝牙控制称重播报,去皮,清零等操作。通过蓝牙控制称重,重量超过最大值会惊醒语音警告,通过蓝牙控制称重播报,去皮,清零等操作。通过蓝牙控制称重,重量超过最大值会惊醒语音警告,通过蓝牙控制称重播报,去皮,清零等操作。通过蓝牙控制称重,重量超过最大值会惊醒语音警告,通过蓝牙控制称重播报,去皮,清零等操作。通过蓝牙控制称重,重量超过最大值会惊醒语音警告,通过蓝牙控制称重播报,去皮,清零等操作。通过蓝牙控制称重,重量超过最大值会惊醒语音警告,通过蓝牙控制称重播报,去皮,清零等操作。通过蓝牙控制称重,重量超过最大值会惊醒语音警告,通过蓝牙控制称重播报,去皮,清零等操作。通过蓝牙控制称重,重量超过最大值会惊醒语音警告,通过蓝牙控制称重播报,去皮,清零等操作。通过蓝牙控制称重,重量超过最大值会惊醒语音警告,通过蓝牙控制称重播报,去皮,清零等操作。通过蓝牙控制称重,重量超过最大值会惊醒语音警告,通过蓝牙控制称重播报,去皮,清零等操作。
2025-05-20 10:27:27 41.64MB fpga开发
1
**正文** 语音识别技术在近年来已经广泛应用于智能家居、智能车载、人工智能等领域,为我们的生活带来了极大的便利。在本文中,我们将深入探讨一个专门用于语音识别的芯片——LD3320,以及如何利用它进行开发。 LD3320是一款高性能、低功耗的语音识别IC,特别适用于嵌入式系统。它的主要功能包括语音唤醒、关键词识别、命令控制等,支持自定义关键词库,能够适应各种应用场景的需求。这款芯片内置了数字信号处理器(DSP)和闪存,可以进行离线处理,无需依赖云端服务,极大地降低了数据传输的需求和延迟问题。 在开发LD3320时,我们通常需要掌握以下几个关键知识点: 1. **硬件接口**:了解LD3320的引脚定义和功能,例如I2C、SPI或UART通信接口,电源管理,模拟音频输入输出等。正确连接这些接口是实现与微控制器交互的基础。 2. **初始化设置**:通过编程配置LD3320的寄存器,设定唤醒词、识别模式、采样率等参数。这一步通常需要参考官方的数据手册或开发文档。 3. **51系列单片机编程**:由于描述中提到包含51代码,所以开发者需要熟悉51单片机的指令集和编程环境,如Keil uVision。51代码可能包含了与LD3320通信的函数和中断服务程序。 4. **语音数据处理**:理解如何处理和存储语音样本,以及如何将其转换为LD3320可识别的格式。这可能涉及到模数转换、压缩和解压缩等过程。 5. **唤醒词与关键词库**:LD3320允许用户自定义唤醒词和命令词,开发者需要知道如何创建和加载这些库,以及如何优化识别准确率。 6. **中断处理**:当LD3320检测到唤醒词或命令词时,会触发中断,此时需要编写中断服务程序来处理后续的操作。 7. **移植性**:描述中提到代码注释清晰,方便移植,这意味着开发者可以将这套方案应用到其他MCU平台,只需适配不同的接口和驱动。 8. **调试与优化**:在实际应用中,可能需要不断调试和优化识别性能,这包括调整灵敏度、降低误报率和漏报率等。 LD3320语音识别开发涉及硬件接口设计、软件编程、声音处理等多个方面,是一个综合性的工程。通过提供的开发资料,开发者可以快速上手并实现自己的语音识别项目。无论是智能家居的控制指令,还是车载系统的语音交互,LD3320都能提供强大的技术支持。对于初学者和资深开发者来说,这份资源都是一个宝贵的参考资料。
2025-05-20 08:21:24 6.74MB LD3320 语音识别 3320
1
项目介绍 https://qtchina.blog.csdn.net/article/details/107972151
2025-05-18 16:13:16 37.96MB gb28181 录像回放
1
在本项目中,我们主要探讨的是如何通过STM32F103C8T6微控制器来实现语音模块控制步进电机的转动。这个过程涉及到了嵌入式系统设计、微处理器编程、数字信号处理以及电机控制等多个领域的知识点。下面我们将逐一深入解析这些关键点。 STM32F103C8T6是一款基于ARM Cortex-M3内核的微控制器,具有丰富的外设接口和较高的处理能力,是许多嵌入式应用的理想选择。在本案例中,它作为系统的中心处理器,负责接收和解析来自语音模块的指令,并驱动步进电机按照指定的位置和速度运动。 语音模块,通常是指能够识别和处理语音信号的硬件或软件组件。在这里,我们使用的是LD3320,这是一款专门用于语音识别的芯片,它可以处理音频输入并将其转化为可操作的命令。通过连接到STM32,当用户发出特定的语音指令时,LD3320将这些指令转换为数字信号,然后传递给STM32进行后续处理。 步进电机是一种精密的电动机,能将电脉冲转化为精确的角度移动。42相步进电机可能指的是42个磁极对的电机,这意味着它具有高分辨率和良好的定位能力。在实际应用中,通常使用脉宽调制(PWM)技术来控制步进电机的速度。PWM通过改变占空比来调整电机得到的平均电压,从而改变电机的转速。 在项目中,STM32通过其内置的定时器配置成PWM模式,根据接收到的语音指令来调整PWM的占空比,进而控制步进电机的转速。同时,通过对步进电机的驱动电路进行精细化控制,可以实现精确的位置定位,确保电机按照设定的路径和速度运动。 为了实现这一功能,开发者需要编写固件代码,包括初始化STM32的GPIO、定时器和串行通信接口,设置PWM参数,以及处理与语音模块的通信协议等。这些都需要对C语言编程、嵌入式系统开发和STM32 HAL库有深入理解。 此外,"语音控制电机"这个文件很可能是包含项目代码、原理图或者用户手册的文档,用于指导开发者如何搭建系统和编写控制程序。通过仔细研究这些资源,开发者可以了解到整个系统的实现细节和步骤。 总结来说,这个项目涉及到的关键技术包括STM32的硬件接口编程、语音识别模块的使用、PWM控制步进电机以及嵌入式系统的综合设计。对于想要深入学习嵌入式系统和电机控制的工程师而言,这是一个很好的实践项目。
2025-05-18 13:40:53 462.24MB stm32f103c8t6 LD3320 语音模块 42相步进电机
1
语音放大电路的设计与实现_蔡晓艳.caj
2025-05-17 11:54:57 1.4MB
1
谷歌语音 适用于Google语音系统(ASR)的node.js模块 安装 npm install google - speech -- save 自动语音识别 获取API密钥: : 更多文档: : var google_speech = require ( 'google-speech' ) ; google_speech . ASR ( { developer_key : 'XXXXXXXX' , file : 'data/1.wav' , } , function ( err , httpResponse , xml ) { if ( err ) { console . log ( err ) ; } else { console . log ( httpResponse . statusCode ,
2025-05-16 17:46:44 45KB JavaScript
1
标题 "使用onnxruntime部署C2PNet图像去雾,包含C++和Python两个版本的程序.zip" 提供了一个关于图像处理和深度学习部署的场景。C2PNet(可能是Clear to see the Past Network)是一种用于图像去雾的深度学习模型,而ONNXRuntime是一个跨平台、高性能的推理引擎,用于运行ONNX(Open Neural Network Exchange)格式的模型。接下来,我们将深入探讨这两个关键概念以及如何在C++和Python中进行集成。 让我们理解C2PNet。C2PNet是一个深度学习网络,设计用于去除图像中的雾霾或雾气,提高图像的清晰度和可读性。这种模型通常基于卷积神经网络(CNN),通过学习从雾天图像到清晰图像的映射来实现去雾效果。它可能包含多个卷积层、池化层、激活函数(如ReLU)以及反卷积层,以恢复图像的细节。 然后,我们来看ONNXRuntime。ONNXRuntime是一个开源项目,由微软开发,用于优化机器学习模型的推理性能。它可以支持多种框架(如TensorFlow、PyTorch、Keras等)生成的ONNX模型,并在不同平台上高效运行。ONNX是一种开放标准,旨在促进模型之间的互操作性,使模型可以跨各种框架和工具进行迁移。 接下来是程序部署的两个版本:C++和Python。C++版程序适合需要高性能和低延迟的应用,例如嵌入式系统或实时处理。Python版则提供了更高的开发灵活性和易用性,适合快速原型设计和测试。 在C++中集成ONNXRuntime,开发者需要: 1. 安装ONNXRuntime库。 2. 加载ONNX模型,这通常涉及创建一个` Ort::Session`对象并提供模型路径。 3. 准备输入数据,确保其符合模型的输入形状和数据类型。 4. 执行推理,调用`Session::Run()`方法。 5. 处理输出结果,提取去雾后的图像。 在Python中,步骤相对简单: 1. 导入onnxruntime库。 2. 创建`onnxruntime.InferenceSession`对象。 3. 使用`run()`方法执行模型,传入输入数据。 4. 获取输出结果,同样处理成去雾后的图像。 标签 "c++ c# c 编程语音" 暗示了程序可能也支持C#,但描述中并未明确提及。如果需要在C#中部署C2PNet,原理与C++类似,只是语法和API会有所不同。 总结来说,这个压缩包提供的资源是一个使用ONNXRuntime部署的C2PNet图像去雾解决方案,包括C++和Python两种实现。用户可以根据自己的需求和环境选择合适的语言进行部署,利用深度学习的力量来改善图像在雾天条件下的视觉效果。
2025-05-16 14:59:42 4.22MB 编程语音
1
在信息处理技术领域,语音信号去噪是一个至关重要的研究课题。随着数字信号处理技术的不断发展,基于MATLAB的语音信号去噪技术已经成为实现高质量语音通信的重要手段。MATLAB作为一种高性能的数值计算和可视化软件,广泛应用于工程计算、算法开发、数据可视化、数据分析以及数值分析等多个领域。利用MATLAB强大的功能,开发者可以有效地实现语音信号的去噪处理,提升语音质量,尤其在噪声环境下的语音通信中显得尤为重要。 语音信号去噪技术的核心在于滤除语音信号中的噪声成分,保留或增强语音信号中的有效成分。在众多去噪算法中,维纳滤波器去噪是一种行之有效的方法。维纳滤波器通过在频域中对信号进行分析,并采用统计方法来估计原始信号,从而达到去噪的目的。与传统的带通滤波器相比,维纳滤波器能够根据信号和噪声的统计特性,动态调整滤波特性,从而更好地适应不同噪声环境下的去噪需求。 在MATLAB环境中实现维纳滤波器去噪,首先需要采集含有噪声的语音信号。通过对信号进行预处理,比如分帧、加窗等步骤,可以为后续的去噪处理奠定基础。接着,根据噪声环境的特点,选取合适的维纳滤波器算法,通过计算得到滤波器的参数。在MATLAB中,可以利用内置的信号处理工具箱中的函数来实现维纳滤波器的设计和应用。在去噪过程中,需要注意保持语音信号的音质和清晰度,避免过度滤波导致语音失真。 此外,本项目的GUI(图形用户界面)设计,使得语音信号去噪的过程更加直观和易于操作。用户无需深入了解复杂的算法和编程细节,便可以通过友好的界面操作进行语音信号的去噪处理。GUI通常包括信号输入输出、滤波参数设置、实时显示处理结果等功能,极大地方便了非专业人士的使用。 基于MATLAB的语音信号去噪实现,不仅在技术层面涵盖了信号采集、预处理、滤波算法设计等关键步骤,而且还提供了一个方便易用的GUI平台,使得去噪技术更加贴近实际应用。这样的技术实现对于提高语音通信质量、改善用户体验具有显著的推动作用。
2025-05-15 20:31:38 2.42MB
1
内容概要:本文详细介绍了Matlab语音识别技术,重点讲解了GMM(高斯混合模型)和MFCC(梅尔频率倒谱系数)两种核心技术。首先阐述了这两种技术的工作原理及其在语音信号处理中的优势,然后讨论了训练集和测试集的构建方法,强调了数据预处理的重要性。最后,通过多个实际应用案例展示了Matlab语音识别技术在智能家居、智能安防、车载通讯等领域的广泛应用。 适合人群:对语音识别技术感兴趣的科研人员、工程师和技术爱好者,尤其是那些希望深入了解Matlab在语音处理方面应用的人群。 使用场景及目标:适用于希望通过Matlab实现高效语音识别系统的开发者,旨在帮助他们理解和掌握GMM和MFCC算法的具体实现步骤,从而提升语音识别系统的准确性和稳定性。 阅读建议:读者可以通过本文全面了解Matlab语音识别的基本概念和技术细节,建议结合提供的训练集和测试集进行实践操作,以加深对理论的理解并验证实际效果。
2025-05-12 14:44:55 1.9MB
1