joulwatt JW3651 21V 3A 4-Switch Buck-Boost Converter Buck-Boost Converter 是一种特殊类型的DC-DC Converter,它可以将输入电压范围内的电压转换为稳定的输出电压。 JW3651 是一种高性能的 Buck-Boost Converter,它可以输出-programmable 电压,从 0.9V 到 20V,通过外部电阻实现。 JW3651 采用单感应器架构,可以在输入电压高于、低于或等于输出电压时工作。它还支持 2-开关_boost 模式,以提高效率。集成的低 Rds(on) MOSFET 最小化了物理 footprint,最大化了效率,减少了功率损耗。恒流控制用于保护设备在故障条件下的过压保护。内置回路补偿简化了电路设计。 JW3651 保证了鲁棒性,具有欠压锁定、短路保护和热保护功能。 JW3651 的特点包括: * 集成低 RDS (on) 电源 MOSFET * 宽输入电压范围:3.0V-21V * 宽输出电压范围:0.9V-20V * 兼容 4-开关 Buck-Boost 模式和 2-开关 Boost 模式 * 固定频率 450kHz * 可编程输入和输出电流限制 * 输出恒流控制 * 待机电流:<60μA * 集成输出短路保护(4-开关 Buck-Boost 模式) * 集成热保护 * QFN3X4-15 封装 JW3651 的应用场景包括: * 电池系统 * USB 电源传输 * 工业应用 * 汽车系统 JW3651 的典型应用电路如图所示,展示了 JW3651 的工作原理和应用场景。 JW3651 的高效率和可靠性使其在许多应用场景中发挥着重要作用。
2024-12-08 17:08:05 904KB Buck-Boost
1
Matlab Simulink:两级式光伏并网系统(光伏板+boost变器+LCL逆变器+电网) 组成部分及功能: 1.主电路:由光伏板+boost变器+LCL逆变器+电网组成,电网电压相电压有效值220 V,频率 50 Hz 2.控制模块,光伏的MPPT采用扰动增量法+PI控制的模式(标准光强下最大功率10 kW),LCL逆变器采用电压电流双闭环解耦控制,直流母线电压控制在700 V 3.锁相环及坐标变,从abc坐标轴到dq坐标轴 4.调制模块,采用SVPWM 5.观测模块,示波器观测,同时将数据输出到工作空间以便于画图。 版本为Matlab2020b,仿真波形良好,由于部分模块低版本没有,因此只能用20b或以上版本
2024-10-12 17:36:58 356KB matlab
1
在电力电子领域,Boost转换器是一种常用的直流-直流(DC-DC)升压电路,它能够将较低的输入电压提升到较高的输出电压。在设计Boost转换器的控制系统时,为了确保系统的稳定性和性能,通常会采用PI(比例积分)控制器进行电压环控制。"boostdianyahuan_伯德图_boost电压环pi调节_"这个标题暗示了我们将讨论如何通过伯德图分析来优化PI控制器的参数。 伯德图是系统频率响应的一种图形表示,它描绘了系统在不同频率下的增益和相位特性。在Boost电压环路中,伯德图可以帮助我们理解系统对不同频率输入信号的响应,进而调整PI控制器的参数,以达到期望的动态性能,如上升时间、超调、稳态误差等。 我们需要了解PI控制器的工作原理。比例(P)项反应了系统对当前误差的响应,而积分(I)项则考虑了过去一段时间内的累积误差,有助于消除稳态误差。通过调整这两个参数,我们可以改变系统的响应速度和稳定性。 在设计过程中,我们先建立Boost转换器的数学模型,然后将PI控制器加入其中,形成闭环控制系统。接下来,通过仿真软件(如MATLAB中的"boostdianyahuan.m"、"BUCK.m"、"boostshuangbihuan.m"等脚本文件)生成系统的频率响应,即伯德图。伯德图通常包含两个部分:增益曲线和相位曲线。 增益曲线反映了系统在不同频率下的放大倍数,理想情况下,我们希望在低频段增益足够大,保证系统的快速响应;而在高频段,增益应适当降低,防止振荡。相位曲线则展示了系统延迟,当相位穿越-180度时,系统可能变得不稳定。 通过观察伯德图,我们可以找到穿越0dB线的频率,即截止频率。在截止频率以下,系统应有足够的增益以保证快速响应;而在截止频率以上,增益下降,防止高频噪声放大。同时,我们还需要关注相位裕量,确保系统在相位穿越-180度时有足够的稳定裕量。 根据伯德图,我们逐步调整PI参数,以达到理想的截止频率、相位裕量和增益裕量。这通常涉及到反复试错的过程,每次调整后都需要重新绘制伯德图,直至系统性能满足设计要求。 "boostdianyahuan_伯德图_boost电压环pi调节_"这个主题涵盖了Boost转换器的电压环控制设计,特别是利用伯德图进行PI控制器参数优化的关键步骤。通过对MATLAB脚本文件的分析和仿真,我们可以深入理解Boost转换器的动态行为,并实现高效稳定的电压调节。
2024-09-25 09:35:34 2KB
1
本仿真 通过对升降压斩波电路的仿真研究,分析不同占空比对电路输出波形的影响规律,通过调节占空比的大小改变输出电压波形,可设定脉冲宽度即占空比的值,进行实验对比
2024-09-16 11:34:38 18KB 电力电子 matlab
1
三通道交错并联双向buck-boost变换器。 通过simulink搭建的三通道交错并联双向buck-boost变换器,采用电压外环,三电流内环,载波移相120°的控制方式。 在buck模式与boost模式互相切换之间,不会产生过压与过流,实现了能量双向流动。 且交错并联的拓补结构,可以减少电感电流的纹波,减小每相电感的体积,提高电路的响应速度。 该拓补可以用于储能系统中。 整个仿真全部离散化,采用离散解析器,主电路与控制部分以不同的步长运行,更加贴合实际,控制与采样环节全部自己手工搭建,没有采用Matlab自带的模块。
2024-08-15 08:36:52 3KB matlab
1
VAA是由V5V(5V)通過Boost電路得到的, 可以從X-Board上測得VAA電壓值為10.5V。 VAA有以下兩大功能: 1.VAA通過Charge Pump得到VGH、VGL。 2.VAA通過分壓得到10組GAMMA值和VCOM值來控制64灰階。 VGL、VGH为液晶开关电压。当Gate端为VGL时,液晶关闭;当Gate端为VGH时,液晶开启。VGL为-6.8V,VGH为23V。但事实上供Panel端的VGH不为直流,而是幅值为23V的脉宽波形。
2024-08-05 13:47:27 5.1MB
1
使用boost最新版本1.81.0库制作的聊天软件,包含服务端、客户端程序,代码全程包含中文注释。如main主函数、服务端类、客户端类、异步lamba函数调用,聊天室消息队列、客户端连接队列、聊天内容协议解析等。 如没有boost 1.81.0库,需先下载: https://www.boost.org/users/download/ 部分代码示例如下 // 发布该聊天消息 void deliver(const chat_message& msg) { // 添加到聊天队列中,如果超出最大消息数目,则弹出1条最早的消息 recent_msgs_.push_back(msg); while (recent_msgs_.size() > max_recent_msgs) recent_msgs_.pop_front(); // 给聊天室内每个人发送最新消息 for (auto participan: participants_) participant->deliver(msg); }
2024-06-21 16:25:00 10KB 服务端软件 asio 聊天软件
1
buck-boost变换器的非线性PID控制,主电路也可以换成别的电路。 在经典PID中引入了两个TD非线性跟踪微分器,构成了非线性PID控制器。 当TD的输入为方波时,TD的输出,跟踪方波信号也没有超调,仿真波形如下所示。 输入电压为20V,设置输出参考电压为10V,在非线性PID的控制下,输出很快为10V,且没有超调。 当加减载时,输出电压也一直为10V。 整个仿真全部采用模块搭建,没有用到S-Function。
2024-06-20 16:13:40 350KB
1
闭环Buck-Boost变换器的建模与仿真_Matlab Simulink开关电源.zip
2024-06-19 22:35:07 120KB
1
DCDC计算器 boost升压计算器 参数选型编程工具 需要net4.8环境
2024-06-04 08:59:17 1.8MB 编程语言
1