基于BP人工神经网络的SmFeN永磁材料工艺-磁性能关系预测,叶金文,刘 颖,采用均匀设计的方法设计了HDDR工艺条件的4因素16水平的实验方案,建立了工艺参数与磁性能之间的神经网络数学模型,利用该模型结合�
2024-02-25 15:07:27 323KB 首发论文
1
BP人工神经网络以及基于BP人工神经网络的MIV变量筛选,用于建立预测模型以及关键工艺参数筛选
1
基于MATLAB的BP人工神经网络设计.pdf
2022-07-10 18:00:40 97KB 计算机
利用反向传播(BP)神经网络预测方法,通过光纤将红外光谱仪、拉曼光谱仪和旋光测量系统结合在一起,建立了基于多光谱测量血糖含量的分析模型,提出了数据融合的处理方法。选择了30个人体血液样品,分别测量旋光光谱、红外光谱、拉曼光谱。将光谱数据进行了预处理与归一化处理,建立BP神经网络模型,预测血液样品的糖含量值。使用克拉克误差网格分析法分别分析了三种测量方法和数据融合后的血糖值,结果应用BP人工神经网络模型预测血糖值的拟合精度为0.9992,预测误差低于0.2 mmol/L,满足临床医学的精度要求,并且具有较高的稳健性和较强的容错能力。
1
BP人工神经网络C++ Fortran Matlab源码
2022-05-12 10:58:30 10KB BP人工神经网络 C++ Matlab
1
利用Landsat7 ETM+遥感图像反射率和实测水深值之间的相关性,建立了动量BP人工神经网络水深反演模型,并对长江口南港河段水深进行了反演。结果表明:具有较强非线性映射能力的动量BP神经网络模型能较好地反演出长江口南港河段的水深分布情况;由于受长江口水体高含沙量的影响,模型对小于5 m的水深值反演精度较高,而对大于10 m的水深值反演精度较低。
2022-04-28 21:00:55 1.26MB 人工神经网络
1
ML机器学习入门 神经网络基础 BP人工神经网络的基本原理、模型与实例 本讲大纲: 人工神经网络的基本概念 误差反向传播(BP)神经网络
由于影响电力负荷的因素之间存在着非线性,所以采用神经网络方案来进行短期电力负荷预测。对应用于实际的神经网络算法进行了具体处理,如数据的归一化,输入向量和输出向量的选择。仿真结果表明其有较好的预测精度。该模型具有网络结构较小、训练时间短、易于实现的优点。
2022-03-25 10:37:49 2.1MB 自然科学 论文
1
车牌识别是电子警察系统重要的功能模块, 字符识别是车牌识别的关键步骤。目前,BP(Back Propagation)人工神经网络因其优越的性能而广泛应用到车牌识别中,但是BP神经网络在局部极值、假饱和、收敛速度缓慢等方面存在着不足。针对这些局限性,从网络的层数、节点数、动量项、学习因子方面进行分析和改进,构建了一个优化的BP人工神经网络,进行字符识别。仿真结果表明,该优化的识别算法识别准确率高,具有良好的识别性能。
2021-12-26 17:11:17 531KB 论文研究
1
一个典型的BP人工神经网络应用实例,通过对它的研究与学习相信您会从最底层接触和了解BP人工神经网络的任何细节和原理,而不像MatLab中的那样您仅会知道如何调用...
1