《计算机视觉中的数学方法》由射影几何、矩阵与张量、模型估计3篇组成,它们是三维计算机视觉所涉及的基本数学理论与方法。射影几何学是三维计算机视觉的数学基础,《计算机视觉中的数学方法》着重介绍射影几何学及其在视觉中的应用,主要内容包括:平面与空间射影几何,摄像机几何,两视点几何,自标定技术和三维重构理论。矩阵与张量是描述和解决三维计算机视觉问题的必要数学工具,《计算机视觉中的数学方法》着重介绍与视觉有关的矩阵和张量理论及其应用,主要内容包括:矩阵分解,矩阵分析,张量代数,运动与结构,多视点张量。模型估计是三维计算机视觉的基本问题,通常涉及变换或某种数学量的估计,《计算机视觉中的数学方法》着重介绍与视觉估计有关的数学理论与方法,主要内容包括:迭代优化理论,参数估计理论,视觉估计的代数方法、几何方法、鲁棒方法和贝叶斯方法。
2025-07-18 22:29:16 3.95MB 计算机视觉 数学方法
1
# 基于Arduino UNO的智能化家禽养殖农场控制系统 ## 项目简介 该项目是一个利用Arduino UNO开发板实现家禽养殖农场的智能化控制系统。该系统旨在通过硬件和软件结合的方式,实现对家禽养殖环境的自动化监控和管理。 ## 项目的主要特性和功能 1. 环境监控: 系统能够实时监控农场内的温度、湿度、光照等关键环境参数。 2. 自动喂食: 定时自动喂食系统,确保家禽得到规律的饮食。 3. 水源管理: 自动检测饮水器状态,及时提示或自动补水。 4. 智能警报: 若环境参数超过预设阈值,系统将触发警报并发送通知。 5. 数据记录与分析: 记录并分析家禽生长数据和环境数据,为养殖提供决策支持。 ## 安装使用步骤 假设用户已经下载了本项目的源码文件,以下是安装和使用步骤 1. 硬件准备: 准备所需的Arduino UNO开发板、传感器(如温度、湿度、光照传感器)、执行器(如饲料分配器、警报器等)。
2025-07-18 21:44:42 1.13MB
1
STM32 JSON解析详解 在嵌入式系统开发中,STM32微控制器因其高性能、低功耗的特点而被广泛应用。而JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,广泛用于通信协议和数据存储。本示例程序旨在教您如何在STM32平台上解析JSON字符串,以实现数据的读取和处理。 1. JSON基础知识 JSON是一种基于文本的数据格式,易于人阅读和编写,同时也易于机器解析和生成。它的主要数据类型包括对象(字典)、数组、字符串、数字、布尔值和null。对象由键值对构成,用大括号{}包围;数组是有序的元素集合,用方括号[]包围。 2. STM32 JSON解析库 在STM32上解析JSON通常需要使用第三方库,如cJSON、Embedded JSON等。这些库提供了API函数,方便开发者将JSON字符串转化为C语言结构体或数组,便于程序处理。 3. cJSON库介绍 cJSON是一个小型、快速且简单的JSON解析器,适用于嵌入式系统。它提供了创建、解析和序列化JSON的功能。在STM32项目中,首先需要将cJSON库移植到STM32平台,然后通过调用其提供的API进行JSON操作。 4. 示例代码解析 在"json"这个文件中,可能包含了一个示例程序,该程序展示了如何使用cJSON库解析JSON字符串。程序通常会包括以下步骤: - 包含cJSON库头文件 - 初始化cJSON库 - 分配内存用于存储JSON对象 - 读取JSON字符串 - 解析JSON字符串,获取所需的数据 - 清理内存,释放分配的空间 - 使用解析得到的数据执行相应的功能 5. cJSON使用示例 例如,有一个JSON字符串`{"name":"John", "age":30, "city":"New York"}`,可以按照以下步骤解析: - 创建一个cJSON_F印射对象:`cJSON *root = cJSON_Parse(json_string);` - 通过键值访问数据:`const char *name = cJSON_GetObjectItem(root, "name")->valuestring;` - 获取数值:`int age = cJSON_GetObjectItem(root, "age")->valueint;` - 当完成解析后,记得清理:`cJSON_Delete(root);` 6. STM32内存管理 在资源有限的STM32设备上,内存管理是关键。解析JSON时,需要合理分配和释放内存,避免内存泄漏。同时,根据STM32的RAM大小选择合适的JSON对象池大小。 7. 性能优化 对于大规模的JSON数据,优化解析速度和内存使用是必要的。可以考虑预处理JSON字符串,减少解析次数,或者使用内存池来管理内存。 总结,STM32解析JSON字符串涉及的关键知识点有JSON格式、cJSON库的使用、STM32内存管理和性能优化。通过理解这些概念并结合示例代码,开发者可以有效地在STM32平台上处理JSON数据,实现数据的读取和解析。
2025-07-18 20:30:28 671KB json stm32
1
TIC20000基于F28069 cla应用经验.zip
2025-07-18 19:37:02 1.7MB DSP 硬件开发
1
在电子设计领域,数字模拟转换器(Digital-to-Analog Converter,简称DAC)是一种重要的设备,它能够将数字信号转换为模拟信号。在这个“DAC输出正弦波50Hz.zip”压缩包中,包含的资源是关于如何使用DAC生成50Hz正弦波的程序和执行文件。下面我们将深入探讨两种实现方法及其相关的知识点。 我们来看第一种方法:构造正弦波数组表。这种方法基于预计算的正弦值,通过存储一系列代表不同相位的正弦波数值,然后按照这些数值控制DAC的输出。这种方法的优点在于精度高,因为可以预先计算出任意精度的正弦值。然而,这种方法需要较大的存储空间,且生成新的频率或幅度的正弦波时需要重新计算数组。在提供的程序中,这个功能可能被注释掉,因为作者更倾向于使用第二种方法。 第二种方法是动态生成正弦波,即使用数学函数实时计算正弦波的值。这种方法通常使用三角函数(如sine或cosine)来生成正弦波形,通过改变函数的输入参数(通常是时间或相位)来改变输出。对于50Hz的正弦波,频率参数设为50,表示每秒变化50个周期。这种方法节省了存储空间,但计算量相对较大,需要处理器具有足够的计算能力。 在实际应用中,DAC输出正弦波的过程涉及以下关键步骤: 1. **数据准备**:根据选定的频率(这里是50Hz)和分辨率确定正弦波的幅度和采样率。通常,采样率需要高于信号的两倍频率,即至少100Hz,以满足奈奎斯特定理。 2. **数字信号处理**:使用上述的数组法或函数法生成数字正弦序列。如果是函数法,需要考虑计算效率,可能会使用查表(LUT,Lookup Table)技术来平衡计算速度和内存占用。 3. **DA转换**:将生成的数字信号送到DAC,DAC将这些数字值转换成对应的模拟电压。 DAC的分辨率决定了输出电压的精细度,例如8位DAC能提供256个不同的电压级别。 4. **滤波**:DAC输出的信号往往包含高频噪声,需要通过低通滤波器(LPF)平滑信号,使其更接近理想的正弦波形。 5. **反馈与调整**:根据实际输出的正弦波质量进行反馈调整,如调整滤波器参数或优化计算方法。 在压缩包内的“sinewave.exe”可能是用于演示或测试这两种方法的执行文件,而“DAC输出正弦波50hz”可能是源代码或者配置文件,包含了实现上述方法的具体代码。 生成DAC输出的正弦波涉及到数字信号处理、模拟信号转换以及系统级的优化。理解这些原理对于设计和调试涉及DAC的电子系统至关重要。无论是选择数组表还是函数生成,都需要根据具体应用场景的性能和资源需求来权衡。
2025-07-18 18:52:13 5MB
1
iTOP-4412-Android-485测试例程-精英板.zip是一个与RS485通信相关的软件包,适用于iTOP-4412开发板,并且是基于Android系统的。在本文中,我们将深入探讨RS485通信协议、iTOP-4412开发板以及如何在Android系统上实现RS485通信。 RS485是一种广泛使用的串行通信标准,尤其在长距离和多设备通信中。它提供了比标准RS232更高的数据传输速率和更远的传输距离。RS485使用差分信号,这使得它具有良好的抗噪声干扰能力,并支持多个设备(最多可达32个)在一条总线上进行半双工通信。在实际应用中,RS485常用于工业控制、自动化设备、仪表和传感器之间的通信。 iTOP-4412是一款功能强大的开发板,它搭载了Samsung Exynos4412处理器,这是一款四核ARM Cortex-A9处理器,拥有高性能和低功耗的特点。开发板通常用于嵌入式系统和物联网(IoT)项目的原型设计。iTOP-4412配备了丰富的外设接口,包括RS485接口,使得开发者可以方便地进行各种通信协议的实验和开发。 在Android系统上实现RS485通信并非易事,因为Android原生并不直接支持串行通信。但可以通过使用第三方库如Android Serial Port Interface (ASPI)或者通过JNI(Java Native Interface)调用C/C++库来访问硬件串口。这个测试例程可能包含了必要的驱动程序、库文件以及示例代码,帮助开发者设置和控制iTOP-4412的RS485接口,进行数据收发。 在压缩包中的"iTOP-4412-Android-精英板-485测试例程",很可能包含以下内容: 1. **驱动程序**:可能包含Android系统的USB转串口驱动,用于将RS485接口暴露给应用程序。 2. **库文件**:例如JNI库,提供C/C++接口以操作硬件串口。 3. **示例代码**:Java或C++代码示例,展示了如何初始化RS485接口,设置波特率、奇偶校验等参数,以及如何进行数据发送和接收。 4. **配置文件**:可能包含与硬件连接相关的配置信息,如端口号、波特率等。 5. **文档**:详细说明如何使用这个测试例程,包括安装步骤、API使用方法、注意事项等。 使用这个测试例程,开发者可以快速了解并实践在Android平台上进行RS485通信的方法,这对于基于iTOP-4412开发板的智能设备或物联网应用开发来说非常有帮助。同时,对于其他类似的开发板,通过理解这个例程,也可以作为实现RS485通信的一个参考模板。
2025-07-18 18:30:59 1.95MB RS485通信
1
代码支持excel导入,单次处理100万+地址,地址库快速扫描,BTC(4种格式兼容)ETH/BSCTRONSolana(长字符串格式)自动过滤无效格式,支持自定义RPC节点,支持获取数十种合约余额(含ERC20/TRC20等合约),无需部署节点 在当今数字化时代,批量处理和数据查询是金融、区块链等领域不可或缺的重要操作。特别是对于处理大规模的区块链地址余额查询,这需要高效的算法和强大的技术支持。golang,作为一种现代化、高性能的编程语言,因其简洁、高效的特点,在处理并发任务和网络编程方面表现出色。因此,在标题中提到的“【golang开发】批量查询余额源码”即为使用golang语言编写的程序,目的是为了实现对大量区块链地址余额的批量查询。 从描述中我们可以得知,该源码支持的功能非常强大和实用。它具备Excel导入功能,这意味着用户可以通过Excel表格批量导入地址,极大地提高了操作的便捷性和效率。源码被设计成可以一次性处理超过百万级别的地址查询任务,这显示了其在大规模数据处理方面的能力。此外,该程序还拥有地址库快速扫描功能,能够迅速对地址库进行检索,这在查询效率上有着明显的提升。 源码还具备了对不同区块链格式的兼容性。具体来说,它支持包括BTC(四种不同格式)、ETH、BSC、TRON以及Solana在内的多种区块链地址格式。这种兼容性确保了源码在不同区块链生态系统的普遍适用性。更为人性化的是,程序还具备自动过滤无效地址格式的功能,这样一来,用户无需担心因地址格式错误而影响查询结果。 在区块链技术中,智能合约扮演着重要角色。源码通过自定义RPC(Remote Procedure Call)节点,可以支持获取包括ERC20、TRC20等在内的数十种合约余额。这不仅说明了源码对智能合约的深入支持,也意味着它能够为用户提供全面的合约资产信息查询。 值得注意的是,用户无需部署节点即可使用源码。这大大降低了使用门槛,使得即使是没有复杂网络和区块链基础的用户也能够轻松运行程序,进行区块链地址余额的查询工作。 从压缩包的文件名称列表中,我们可以看到几个关键的目录和文件,这些是构成整个项目的基础。例如,“main.go”是程序的主要入口文件,所有程序逻辑的起点;“go.mod”和“go.sum”则分别记录了项目的依赖模块和版本信息,确保项目在不同环境中的一致性;“使用说明.txt”作为文档文件,为用户提供具体的使用指导;而“contract”、“keys”、“client”、“cmd”、“common”、“address”等目录则分别对应着合约相关文件、密钥文件、客户端代码、命令处理程序、公共组件以及地址数据存储等不同的功能模块。 该golang开发的批量查询余额源码是一个功能强大、高效且易用的区块链数据查询工具。它不仅在技术上展示了golang的高效处理能力,还在实用功能上满足了区块链开发者和相关从业者的日常需求。无论是对于快速查询大量地址余额的需求,还是在复杂环境下对不同格式区块链地址的兼容与处理,这个源码都能够提供稳定而强大的支持。
2025-07-18 17:50:09 87KB web3 智能合约 solidity
1
在计算机视觉领域,轮廓提取是一项重要的技术,它用于识别图像中的边界和形状,这对于对象识别、图像分割和图像分析有着至关重要的作用。本压缩包“轮廓提取c程序(非MFC).zip”提供了一个纯C语言实现的轮廓提取算法,不依赖于Microsoft Foundation Classes (MFC)库,这意味着它具有更好的平台兼容性和轻量级的特点。 1. **轮廓提取基本概念** 轮廓提取是通过对图像进行二值化、边缘检测等预处理步骤来找到图像中不同区域的边界。常见的边缘检测算法有Sobel、Prewitt、Canny、Hough变换等。这些算法通过计算像素梯度强度或方向来确定边缘位置。 2. **C语言编程** C语言是一种底层、高效的语言,适合编写图像处理和计算机视觉的底层算法。虽然相比于高级语言如Python,C语言的语法更为繁琐,但其执行效率高,资源占用少,适合处理大量的图像数据。 3. **非MFC实现** MFC是微软提供的一个面向对象的C++库,用于简化Windows应用程序开发。但非MFC实现意味着这个程序没有使用MFC框架,而是直接调用了操作系统级别的API来完成图像显示。这通常意味着程序更轻便,移植性更好,但可能需要对Windows API有深入的理解。 4. **图像显示工具** 在没有MFC的情况下,开发者可能使用GDI (Graphics Device Interface) 或者GDI+来显示图像。GDI是Windows操作系统的一部分,提供了基本的图形绘制功能,而GDI+则增加了更多的图形处理和图像处理功能。 5. **程序结构与流程** 一个典型的轮廓提取程序可能包括以下步骤: - 图像读取:从文件中加载图像数据。 - 预处理:二值化、平滑滤波等,以减少噪声并突出边缘。 - 边缘检测:应用特定的边缘检测算法,如Canny边缘检测。 - 轮廓提取:找到边缘检测后的连通区域,形成轮廓。 - 显示结果:利用GDI或GDI+将提取的轮廓在窗口上显示出来。 6. **学习和应用** 对于学习者来说,这个程序提供了理解轮廓提取算法和C语言编程实践的机会。可以深入研究源代码,了解每个步骤的具体实现,以及如何利用系统API进行图像处理。对于实际应用,这样的程序可以作为基础模块集成到更复杂的计算机视觉系统中。 7. **优化与扩展** 虽然这是一个基础的轮廓提取实现,但可以通过优化算法参数、采用多线程处理、使用OpenCV等库来增强其性能和功能。例如,OpenCV库提供了丰富的图像处理函数,包括各种边缘检测和轮廓提取算法,可以极大地简化代码并提高效率。 这个压缩包中的C语言轮廓提取程序为学习者和开发者提供了一个直接调用系统API实现图像处理的实例,有助于理解底层图像处理的工作原理,同时展示了非MFC环境下程序设计的可能性。通过深入研究和实践,可以提升在图像处理和计算机视觉领域的技能。
2025-07-18 16:19:02 1.29MB 轮廓提取 非MFC
1
华为MA5600T是一款高性能的宽带接入服务器,常用于提供FTTx(光纤到户)服务。V800R012C00及其后续版本是华为为这款设备提供的软件更新,以增强其功能、性能和稳定性。升级过程对于保持设备的高效运行和网络安全至关重要。下面将详细介绍在CLI(命令行界面)环境下进行MA5600T的升级步骤和注意事项。 一、升级前准备 在开始升级之前,确保以下几点: 1. 安全备份:对当前运行的系统配置和数据进行备份,以便在升级出现问题时可以恢复。 2. 软件包检查:下载正确的软件版本,并验证其完整性,避免因文件损坏导致升级失败。 3. 设备状态检查:确保设备在正常工作状态,无异常告警,且非业务高峰期。 二、升级流程 1. 登录CLI:通过SSH或Console口连接到设备,进入CLI模式。 2. 检查设备硬件:使用命令查询设备硬件信息,确认与新软件版本兼容。 3. 验证软件包:使用`check package`命令检查软件包的完整性。 4. 加载软件包:使用`load package`命令将新的软件版本加载到设备的内存中。 5. 激活软件包:使用`commit`命令激活新版本,此时设备会自动重启并切换至新版本。 三、升级注意事项 1. 平滑升级:尽量选择在低峰期进行,避免影响用户服务。 2. 监控状态:在升级过程中,密切关注设备状态和日志输出,及时发现并处理问题。 3. 升级策略:对于多板卡系统,可以采用先备后主的方式逐个升级,减少风险。 4. 回滚机制:预先规划好回滚方案,如新版本存在问题,能快速恢复到旧版本。 四、故障排查与处理 1. 错误日志分析:如果升级失败,查阅设备日志找出错误原因。 2. 技术支持:遇到复杂问题,及时联系华为官方技术支持寻求帮助。 五、后续维护 1. 配置调整:新版本可能包含功能变更,根据需求更新配置。 2. 性能监控:升级后,持续监控设备性能,确保新版本稳定运行。 3. 更新文档:整理升级过程中的经验和技巧,更新内部操作手册。 通过遵循以上步骤和建议,你可以安全、有效地对华为MA5600T进行CLI环境下的升级。记住,升级不仅是提升设备性能,也是保证网络服务质量和安全的重要环节。因此,每一个步骤都应谨慎对待,确保升级工作的顺利进行。
2025-07-18 15:03:34 1.31MB 华为MA5600T升级
1
目 录 前言 第 1 章 复数及基于统计串列存储数据的编程方法与程序 1.1 复数的几何表示方法 1.2 复数显示格式的应用 1.3 共轭复数 1.4 复数形式坐标反算程序(QH1-4) 1.5 基于统计串列输入数据的极坐标法放样程序(QH1-5) 1.6 复数形式高斯平面坐标线性变换参数计算及批量坐标变换程序(QH1-6) 1.7 复数形式建筑坐标与测量坐标的相互变换程序(QH1-7) 1.8 复数形式单一闭、附合与无定向导线近似平差原理与程序(QH1-8) 1.9 复数形式支导线坐标计算程序(QH1-9) 第 2 章 公路与铁路路线平纵曲线正、反算原理与程序 2.1 单交点基本型路线曲线坐标正算原理 2.2 缓和曲线线元坐标正算原理 2.3 缓和曲线线元坐标反算原理 2.4 圆曲线与直线线元坐标正、反算原理 2.5 直线与缓和曲线线元斜交的交点坐标计算原理 2.6 直线与圆曲线及直线线元斜交的交点坐标计算原理 2.7 单交点基本型曲线坐标正、反算程序(QH2-7) 2.8 线元法任意路线与匝道曲线坐标正、反算程序(QH2-8) 2.9 线元法任意路线与匝道曲线直线斜交程序(QH2-9) 2.10 任意个变坡点的连续竖曲线高程计算程序(QH2-10) 第 3 章 公路与铁路路线施工测量综合程序 3.1 圆曲线加宽值计算程序(QH3-1) 3.2 缓和曲线加宽值计算程序(QH3-2) 3.3 路线纵断面中平测量记录计算程序(QH3-3) 3.4 路线填、挖方工程量计算程序(QH3-4) 3.5 方格网法土方量计算程序(QH3-5) 3.6 解析法带弓形多边形周长与面积计算程序(QH3-6) 第 4 章 公路与铁路路线施工控制测量程序 4.1 1954 北京坐标系与 1980 西安坐标系高斯投影正算、反算及换带程序(QH4-1) 4.2 测角前方交会坐标计算程序(QH4-2) 4.3 测角后方交会坐标计算程序(QH4-3) 4.4 测边后方交会点坐标计算程序(QH4-4) 4.5 施工水准测量记录计算程序(QH4-5) 4.6 四等水准测量计算程序(QH4-6) 4.7 单一闭附合图根水准路线近似平差程序(QH4-7) 4.8 高斯平面坐标系正形变换程序(QH4-8)
2025-07-18 11:24:07 32.7MB 公路测量
1