包含美赛2018年C题的所有优秀论文及其中文翻译
例:
We first build CAFE, a novel framework for Characterization, Analysis, Forecast and
Evaluation on the energy profile (EP) of a state. We constitute EP with 20 items in a multifaceted manner selected and aggregated from the 605 variables in the provided data. We utilize the Gaussian Process Regression (GPR) model to characterize the basic evolving trends, strong fluctuations and random noise level of different EP time series in each state from 1960 to 2009. We combine Gray Relational Analysis and Kendall Rank to measure the similarity of EPs among states in value and tendency respectively, and use both Pearson Correlation Coefficient and Partial Relational Coefficient to unveil outer influential factors on the similarity.
中文翻译:
我们首先构建CAFE,这是一种用于状态能量表征(EP)的表征,分析,预测和评估的新颖框架。我们从提供的数据中的605个变量中选择并汇总了20个项目,构成了一个多方面的EP。我们利用高斯过程回归(GPR)模型来描述1960年至2009年每个州不同EP时间序列的基本演变趋势,强烈波动和随机噪声水平。我们结合使用了灰色关联分析和Kendall Rank 来衡量EP的相似性在价值和趋势状态之间进行区分,并同时使用Pearson相关系数和偏关系系数揭示相似性的外部影响因素
1