本文介绍了利用Python编程实现遥感图像最小距离分类的方法。最小距离分类法是一种基本的分类方法,通过计算未知类别向量到已知类别中心向量的距离,将待分类向量归为距离最小的类别。实验分为ENVI实现和Python编程实现两部分。ENVI实现包括图像文件打开、样本选择、最小距离分类和混淆矩阵计算等步骤。Python编程实现则包括类别确定、特征提取、特征中心计算、归一化处理和距离准则判定等步骤。文章还提供了详细的Python代码,包括数据读取、特征提取、距离计算和结果输出等模块。实验结果表明,编程实现的结果与ENVI分类结果相似,精度均在85%以上。最小距离分类法原理简单、计算速度快,但由于仅考虑类别均值而忽略方差和协方差,分类精度有限,适用于快速浏览分类概况。 在遥感图像处理领域,最小距离分类法是一种基础且高效的分类技术,其核心思想是将遥感图像中的像素点根据其特征与已知类别的中心特征进行比较,选择距离最小的类别作为该像素点的分类结果。这种方法简单直接,计算效率高,特别适合于分类样本数量较多或者需要快速处理的场景。 在实现最小距离分类时,首先需要确定分类的目标类别,这通常需要依据图像的先验知识或统计特性来设定。接着,从遥感图像中提取出相关的特征,这些特征可能包括光谱特征、纹理特征等,这些特征的选择和提取对于分类结果的准确性至关重要。 为了进一步提高分类精度,特征中心的计算是必不可少的步骤。特征中心一般是指各类别特征向量的均值,它们代表了各类别的中心位置,是进行最小距离计算的基准点。在计算特征中心后,还需要对数据进行归一化处理,以消除不同特征量纲的影响,确保距离计算的公平性和准确性。 距离计算是整个分类过程的核心,常用的准则包括欧几里得距离、曼哈顿距离等。通过计算每个像素点到各类别中心的距离,根据距离最小原则,将像素点归类到最近的类别中。为了验证分类结果的准确性,还需要利用混淆矩阵等方法对分类效果进行评估,混淆矩阵能详细反映各类别分类的准确率和遗漏率。 在实际操作中,ENVI软件常被用于遥感图像的处理和分类,它提供了一套完整的操作流程和可视化工具,便于用户进行样本选择、特征提取和分类操作。而Python编程实现则提供了更高的灵活性和可扩展性,程序员可以根据具体需要编写算法和处理流程,其优势在于能够集成更多的算法和处理工具,实现复杂的数据处理和分析任务。 通过对比ENVI软件实现与Python编程实现的最小距离分类方法,我们可以发现,尽管软件提供了方便快捷的途径,但Python编程实现的灵活性和可定制性使其在处理特定问题时更具优势。实验结果表明,Python编程实现的精度可以达到85%以上,这与ENVI软件的分类精度相当。不过,由于最小距离分类法仅仅考虑了类别均值而未考虑方差和协方差,因此其分类精度存在一定的局限性,对于某些类别区分度不高的情况可能不够理想。 最小距离分类法以其原理的简单性和计算的快速性,在遥感图像处理中占有一席之地。它适用于需要快速分类或初步分类的场景,尤其在对分类精度要求不是极端严格的情况下。然而,在面对更为复杂的图像分类任务时,可能需要考虑采用更为复杂和精细的分类方法。
2026-01-10 23:30:44 2.37MB Python编程 模式识别 聚类分析
1
本考研资讯平台的设计主要采用 Java 技术,在整个系统设计中运用 MySQL 数据库完成开发。具体依据网上考研资讯平台的现状进行研发,根据学生需求实现网上考研资讯平台的网络化管理,确保各类信息有序存储。用户进入考研资讯平台页面后,即可开始操作主控界面。系统功能涵盖学生前台,包括首页、考研资讯、报考指南、资料信息、论坛信息、我的、跳转到后台、购物车、客服;管理员端,包括首页、个人中心、考研资讯管理、学生管理、报考指南管理、资料信息管理、资料分类管理、论坛管理、系统管理、订单管理;学生后台,包括首页、个人中心、我的收藏管理、订单管理等。 1 绪论 1.1课题研究背景与意义 1.2课题研究目的 1.3课题研究内容 2 系统开发环境介绍 2.1 Java简介 2.2 Tomcat介绍 2.3 MySQL数据库介绍 2.4 Spring Boot框架 3 系统分析 3.1系统可行性分析 3.1.1技术可行性 3.1.2经济可行性 3.1.3操作可行性 3.2系统性能分析 3.3系统功能需求分析 3.4系统流程分析 4 系统设计 4.1系统设计主要功能 4.2数据库设计 4.2.1数据库E-R图 4.2.2数据表字段设计 5 系统实现 5.1登录设计实现 5.2后台系统实现 5.2.1管理员功能模块 5.2.2学生管理 5.2.3考研资讯管理 5.2.4报考指南管理 5.2.5资料信息管理 5.2.6资料分类管理 5.2.7论坛管理 5.3学生后台功能模块 6 系统测试 6.1测试过程 6.2测试分析 6.3测试结论 结论 参考文献 致谢
2026-01-10 18:25:29 39.47MB java设计 资讯分类
1
骨折分类数据集是指针对骨折这一特定医学影像领域,按照骨折的类型划分,收集和组织起来的大量X光图像或CT扫描图像资料库。该类数据集在医学影像分析、人工智能辅助诊断以及机器学习算法训练中具有重要的应用价值。具体来说,这样的数据集可以帮助医生和研究人员在临床实践中通过智能软件快速准确地诊断骨折类型,提高诊断效率和精准度。 标题“骨折分类数据集1129张10类别”直接指明了数据集的核心特征:它由1129张不同骨折类型的X光图像或CT扫描图像组成,涵盖了10种不同的骨折类别。每一类骨折都有其特定的医学定义和临床表现,例如“avulsion_fracture”指的是骨折碎片连同骨膜的撕裂,“comminuted_fracture”指的是骨折碎片碎裂成多个部分,“spiral_fracture”则是指骨折线呈螺旋形。 数据集的组成遵循了严格的分类标准,每个类别下的图像数量也有所不同,这有助于在建立和训练图像识别模型时实现数据的均衡分布,避免因某一类别的图像数量过多或过少造成模型在特定类别的识别上的偏差。 文件中提到的“图片示例”部分,虽然具体内容未给出,可以理解为数据集内将提供每种骨折类别的典型或代表性的图像样本,用于展示和说明该类骨折在影像上的典型特征和外观表现。 数据集类型为图像分类用,明确了该数据集的用途是为图像分类任务服务,而不适用于目标检测等其他类型的机器学习任务。这意味着数据集中的每一张图像都被标注了其对应的骨折类别标签,但并没有进一步提供有关骨折位置等细节的标注信息。 数据集的格式为jpg图片,且每个类别文件夹下面存放着对应的图片,这说明该数据集按照骨折类型进行了目录级的分类管理,便于使用者根据不同的骨折类型快速查找和访问相应的图像数据。每个类别文件夹下的图片数量有所不同,这一分布特征对于后续建立一个平衡的训练、测试和验证集提供了便利。 骨折分类数据集的创建对于推动医学影像分析技术,尤其是骨折识别技术的自动化和智能化具有重要意义。通过这样的数据集,可以训练出能够快速识别不同类型骨折的智能系统,辅助医生进行更精确的诊断,提高医疗服务质量和效率。
2026-01-08 23:44:31 1.08MB 数据集
1
内容概要:本文聚焦于图像验证码的识别流程,详细介绍了特征提取、样本训练以及最终的识别三个关键步骤。特别强调了KNN(K近邻)算法在此过程中扮演的重要角色。文中不仅解释了每个环节的具体操作方式和技术细节,还探讨了不同算法对于验证码识别效率的影响。 适用人群:对机器学习尤其是分类算法感兴趣的初学者,以及从事图像处理相关工作的技术人员。 使用场景及目标:帮助读者理解并掌握利用KNN算法完成从图像预处理到最终分类决策整个链条的方法论,为后续深入研究或其他实际项目提供理论支持。 其他说明:虽然重点在于KNN的应用,但也提到了其他可能用于验证码识别的技术路径,鼓励读者探索更多可能性。
2026-01-07 16:56:28 429B 机器学习 KNN算法 图像处理 分类识别
1
食材数据 对应中医体质 包含每种食材适合食用和不适合食用的中医体质 列名: 1编号 2成分 3大类 4食部 5食品 6四性 7图片链接 8图片名字 9小类 10功效 11适合体质 12不适合体质 食材数据在中医理论中具有重要的意义,其与中医体质的对应关系是中医药膳学研究的基础内容之一。食材的成分、性味、功效及其适宜和不宜的体质在中医饮食养生和疾病预防中起着关键作用。在此类数据集合中,通常会包含如下知识点: 1. 编号:每个食材都会有一个唯一的标识码,便于分类管理和查询检索。 2. 成分:食材中所含的营养素和化学成分,如蛋白质、脂肪、碳水化合物、维生素、矿物质以及特定的活性成分。 3. 大类:食材按其自然属性或用途被归为大类,例如谷物、蔬菜、肉类等。 4. 食部:指的是食材中可食用部分的比例和内容。 5. 食品:食材的具体名称。 6. 四性:指食材的寒、热、温、凉四种性质,这在中医中用来描述食物的温度属性对体质的影响。 7. 图片链接和图片名字:提供食材的直观影像,方便用户对食材外观有直观认识。 8. 小类:食材按更细的分类进一步区分,比如蔬菜可以再细分为叶菜类、根菜类。 9. 功效:食材的健康益处和药理作用,如补气、补血、清热、解毒等。 10. 适合体质:指出特定食材适合的中医体质类型,如平和体质、阳虚体质、阴虚体质等。 11. 不适合体质:同样重要的是,要了解不同食材可能不适合的中医体质,以避免进食后产生不良反应。 此类数据集对于研究中医药膳学、营养学及中医体质养生理论具有重要参考价值。它可以帮助个人或机构根据中医理论来规划饮食,制作针对不同体质人群的健康食谱,同时在临床和亚健康的调理中,为中医师提供辅助决策依据。 食材数据的分析和应用不仅涉及中医药膳的理论和实践,还涉及现代营养学的知识,两者结合起来可以对人们的饮食健康进行综合指导。这样的数据集对于从事中医药膳研究的学者、中医临床医生、营养师以及对传统饮食文化感兴趣的普通人都是非常有帮助的。通过科学的数据支持,可以更好地实践“药食同源”的理念,将传统中医与现代生活紧密结合,达到健康饮食和疾病预防的目的。
2026-01-06 23:02:22 2.33MB
1
水下通信技术分类、水下通信原理
2026-01-06 20:13:48 23KB 水下通信
1
内容概要:本文是一段用于Google Earth Engine(GEE)平台的JavaScript代码脚本,主要实现了对研究区域(AOI)内2024年Landsat 8卫星影像的获取、预处理与分析。首先定义了一个地理范围矩形区域,随后加载了Landsat 8地表反射率数据集,并按空间范围、时间范围和云覆盖率进行筛选。接着通过自定义函数对影像应用缩放因子校正,生成中值合成影像并裁剪到研究区。在此基础上,计算归一化植被指数(NDVI)和归一化水体指数(NDWI),并对结果进行二值分类:NDVI ≥ 0.2 判定为植被,NDWI > 0.3 判定为水体。最后将原始影像、NDVI、NDWI及其分类掩膜可视化展示在地图上。; 适合人群:具备遥感基础知识和一定GEE平台操作经验的科研人员或学生,熟悉JavaScript语法者更佳;适用于地理信息、环境监测、生态评估等领域从业者。; 使用场景及目标:①实现遥感影像自动批量处理与指数计算;②开展植被覆盖与水体分布的快速提取与制图;③支持土地利用分析、生态环境变化监测等应用研究; 阅读建议:建议结合GEE平台实际运行该脚本,理解每一步的数据处理逻辑,可调整参数(如阈值、时间范围)以适应不同区域和研究需求,并扩展至多时相分析。
2026-01-06 11:32:32 3KB Google Earth Engine JavaScript
1
**MNIST数据集** MNIST(Modified National Institute of Standards and Technology)是一个广泛使用的手写数字识别数据集,由LeCun、Yann等人在1998年提出。它包含了60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,代表0到9的手写数字。MNIST是机器学习和深度学习领域入门的经典数据集,用于验证和比较不同图像识别算法的性能。 **多层感知器(MLP)** 多层感知器(Multilayer Perceptron)是一种前馈神经网络,通常包含一个输入层、一个或多个隐藏层和一个输出层。每个层都由若干个神经元组成,神经元之间通过权重连接。在MLP中,信息从输入层单向传递到输出层,不形成环路。通过反向传播算法和梯度下降法,MLP可以学习非线性模型,从而处理复杂的分类任务。 **Jupyter Notebook** Jupyter Notebook是一款交互式计算环境,支持Python、R、Julia等多种编程语言。它以笔记本的形式组织代码、文本、图表和数学公式,使得数据分析、实验和教学过程更加直观。用户可以通过Markdown语法编写文档,同时可以直接在单元格内运行代码,查看输出结果,非常适合数据探索和模型开发。 **MNIST_MLP-main项目结构** 在"MNIST_MLP-main"这个项目中,我们可以预期包含以下部分: 1. **数据加载**:使用Python的`tensorflow`或`keras`库加载MNIST数据集,预处理包括归一化、数据增强等。 2. **模型构建**:定义多层感知器的架构,可能包括输入层、隐藏层(可能有多个)和输出层。每个隐藏层可能使用ReLU、sigmoid或tanh作为激活函数,输出层则通常使用softmax用于多分类。 3. **编译模型**:设置损失函数(如交叉熵)、优化器(如Adam、SGD等)和评估指标(如准确率)。 4. **训练模型**:使用训练数据集进行模型训练,通过迭代优化权重和偏置。 5. **验证与评估**:在验证集上检查模型性能,避免过拟合。 6. **测试模型**:在测试集上评估模型的泛化能力。 7. **可视化**:可能包含训练过程中的损失和准确率曲线,以及一些样例预测结果的展示。 8. **代码注释**:良好的代码注释可以帮助理解每一步的目的和实现方法。 通过分析这个项目,你可以了解到如何使用MLP在实际问题中进行图像分类,并掌握利用Jupyter Notebook进行实验的过程。这将有助于你理解和实践深度学习的基本概念,同时提供了一个实际操作的平台。
2026-01-03 18:22:25 24KB JupyterNotebook
1
# ResNet50 图像分类训练 Demo(Notebook) 本项目提供一个 **基于 PyTorch 的 ResNet50 图像分类完整示例**,适合作为: - 初学者理解 ResNet50 的入门模板 - 实战项目的起点代码 - Notebook 可视化训练参考 --- ## 项目结构 02_resnet50_image_classification/ ├── resnet50_demo.ipynb ├── model.py ├── sample_data/ │ ├── class1/ │ └── class2/ ├── runs/ ├── requirements.txt └── README.md --- ## 环境要求 - Python ≥ 3.8 - PyTorch 1.13.1 - torchvision 0.14.1 建议使用 Conda 创建独立环境。 --- ## 快速开始 ```bash pip install -r requirements.txt jupyter notebook --- ## 数据格式说明 采用 torchvision ImageFolder 结构: sample_data/ ├── cat/ │ ├── 001.jpg │ └── 002.jpg └── dog/ ├── 001.jpg └── 002.jpg --- ## 说明 本项目为教学与模板用途,训练参数刻意设置较小, 方便快速跑通流程。 欢迎在此基础上进行二次开发。
2025-12-31 16:59:33 83.58MB ResNet50 图像分类 PyTorch
1
《Excel指定分类拆分工具详解》 在日常工作中,数据管理与分析是一项不可或缺的任务,而Excel作为一款强大的电子表格软件,被广泛应用于各种场景。面对大量数据,有时我们需要按照特定的分类标准进行拆分和整理,这就需要用到“Excel指定分类拆分工具”。这款工具能够帮助用户高效地完成数据的筛选、分类和排序,极大地提升了工作效率。 一、工具概述 “Excel指定分类拆分工具”是专门针对Excel数据处理设计的一款实用插件。它无需额外安装复杂的软件环境,只需确保电脑已安装Office套件,即可便捷使用。该工具的主要功能是依据用户设定的分类字段,将原始数据表中的记录按照指定条件拆分成多个独立的工作表,每个工作表对应一类数据,便于后续的数据分析和处理。 二、操作流程 1. 数据准备:用户需要将待处理的数据录入到Excel表格中,确保数据完整且格式规范。 2. 安装插件:下载并安装“Excel指定分类拆分工具”,通常这是一个简单的过程,只需按照提示步骤操作即可。 3. 设置分类字段:打开Excel文件,选择需要拆分的表格,然后在插件界面中设定分类的依据,这可以是数据表中的一列或几列。 4. 拆分操作:点击“拆分”按钮,工具会自动识别并按照设定的分类字段对数据进行拆分,生成新的工作表。 5. 结果确认:拆分完成后,用户可以在Excel中查看新生成的工作表,每个工作表都包含了对应分类的数据,有序且易于管理。 三、适用场景 1. 数据清洗:在数据分析前,通过分类拆分可以快速去除重复数据,整理出干净的数据集。 2. 数据报告:不同类别的数据分开展示,有助于制作更具针对性的报告,使报告结构清晰,重点突出。 3. 数据分析:对不同类别的数据分别进行统计分析,便于找出规律和趋势。 4. 数据归档:对于大量历史数据,按类别拆分后,便于按需调用和存储。 四、优势特点 1. 易用性:操作简单,无需编程知识,适合各类用户使用。 2. 高效性:一键拆分,节省手动操作的时间,提高工作效率。 3. 灵活性:支持多种分类方式,适应不同的数据结构和需求。 4. 可扩展性:可以与Excel的其他功能结合使用,如图表制作、公式计算等,增强数据处理能力。 “Excel指定分类拆分工具”是一款实用性极强的辅助工具,尤其适合于需要频繁处理和分析大量数据的工作者。通过熟练掌握和应用此工具,能有效提升数据管理工作质量和效率,让数据处理变得轻松自如。
2025-12-29 19:41:22 42KB Excel
1