遥感图像处理之分类 本文主要介绍遥感图像处理中的分类方法,包括非监督分类和监督分类两大类。非监督分类中,K-均值分类和ISODATA算法是两种常用的方法,而监督分类中,以最大似然法为例,进行分类的讲解说明。 一、非监督分类 非监督分类是指在不知道分类结果的情况下,对遥感图像进行分类的方法。常用的非监督分类方法有K-均值分类和ISODATA算法。 1、K-均值分类算法 K-均值分类算法是一种常用的非监督分类方法。其步骤如下: (1)打开待分类的遥感影像数据 (2)依次打开:ENVI 主菜单栏—>Classification—>Unsupervised—>K-Means,即进入 K-均值分类数据文件选择对话框 (3)选择待分类的数据文件 (4)选好数据以后,点击 OK 键,进入 K-Means 参数设置对话框,进行有关参数的设置,包括分类的类数、分类终止的条件、类均值左右允许误差、最大距离误差以及文件的输出等参数的设置 (5)建立光谱类和地物类之间的联系:在新窗口中显示分类结果图:然后,打开显示窗口菜单栏 Tools 菜单—>Color Mapping—>Class Color Mapping…进入分类结果的属性设置对话框,在这里,可以进行类别的名称,显示的颜色等,建立了光谱类和地物类之间的联系。 (6)类的合并问题:如果分出的类中,有一些需要进行合并,可按以下步骤进行:选择ENVI 主菜单 Classfaction—>Post Classfiction—>Combine Classes,进入待合并分类结果数据的选择对话框 点击 OK 键,进入合并参数设置对话框,在左边选择要合并的类,在右边选择合并后的类 ,点击 Add Combination 键即完成一组合并的设置,如此反复,对其他需合并的类进行此项操作,点击 OK,出现输出文件对话框,选择输出方式,即完成了类的合并的操作。 2、ISODATA 算法 ISODATA 算法与 K-均值分类算法相似。其步骤如下: (1)进行分类数据文件的选择(依次打开:ENVI 主菜单栏—>Classification—>Unsupervised—>IsoData 即进入 ISODATA 算法分类数据文件选择对话框,选择待分类的数据文件) (2)进行分类的相关参数的设置(点击 OK 键以后,进入参数设置对话框,可以进行分类的最大最小类数、迭代次数等参数的设置) (3)如此,光谱类的划分到此结束。 (4)参看 K-均值分类的第 5—6 步,进行光谱类与地物类联系的建立以及类的合并等操作 二、监督分类 监督分类是指在知道分类结果的情况下,对遥感图像进行分类的方法。常用的监督分类方法有最大似然法、平行六面体法、最小距离法、最大似然法、波谱角法、马氏距离法、二值编码法、神经网络法等。 以最大似然法为例,进行分类的讲解说明: (1)打开待分类的遥感影像数据文件 (2)进行训练样本的选取:在窗口中打开一张影像,选择主窗口菜单栏 Tools 键—>Region Of Interest—>ROI Tools…(或是在主窗口上单击右键,在弹出的快捷菜单栏中选择 ROI Tools…)进入训练样本选取对话框。 (3)进行训练样本的选取,New Region 可以建立新的样本区,在 ROI Name 栏中双击,键入类的地物名,在 Color 栏中双击,可以输入类的颜色,ROI_Type 菜单下可以进行样本类型的设置,在主窗口按鼠标左键即可进行样本区选择,以双击右键结束样本区的选取。 (4)进行最大似然法的分类:在 ENVI 主菜单栏中 Classification—>Supervised—>Maximum Likelihood,进入分类文件的选取对话框,选择相应的待分类文件。然后进入训练样本选取对话框,进行训练样本的选取及分类结果的存储等方面的设置。 (5)单击 OK 键,即开始进行分类。 (6)参看 K-均值分类的第 5—6 步,进行类的相关设置及类的合并等操作 三、两类分类方法的比较 本文使用 K-均值分类法和最大似然法进行了分类比较。从总体上看,两种分类的方法存在较大的差异,这是由于两种分类在相关参数的选取时都存在较大的主观性,在 K-均值分类的算法中,类数的选取对结果有显著影响,在最大似然法分类中,样本选取的数量,样本的质量以及样本的代表性等对分类的结果都会产生很大的影响,这就需要进行相关参数的调节来使得分类效果达到最佳。 遥感图像处理中的分类方法有多种,选择合适的分类方法对分类结果的影响很大。因此,在进行遥感图像处理时,需要根据实际情况选择合适的分类方法,并进行相关参数的调节,以达到最佳的分类效果。
2026-01-26 14:00:46 866KB envi
1
悬浮物质量浓度是黄河口海域重要的水质和水环境监测参数之一,直接影响着水面以下光场的分布!进而影响水体的初级生产力和水域生态环境。本文基于2011年6-7月和11-12月共计89组现场实测悬浮物质量浓度和光谱数据!分析了黄河口及其附近海域不同悬浮物质量浓度的水体光谱特征,尝试利用多种波段组合建立悬浮物质量浓度遥感反演算法。结果表明865nm波段与波段比655nm/560nm组合形式算法反演结果最优!算法相关系数R2为0.95,平均相对误差为25.65%。将算法应用于2014-2016年共7景Landsat 8 OLI遥感影像!分析了不同年份黄河口悬浮物质量浓度的时空分布特征!黄河口海域悬浮物质量浓度分布总体呈现近岸高!离岸低的特点!不同时期悬浮物质量浓度量值上有显著变化。.
2026-01-18 15:33:57 4.13MB 研究论文
1
内容概要:本文主要介绍了利用Google Earth Engine(GEE)平台对2000年与2022年的土地利用/覆盖数据(LULC)进行城市化变化分析的技术流程。通过构建城市区域掩膜,计算城市扩张的净增长与总增长面积,并结合随机像素筛选方法逼近预期的净增城市面积目标。同时,区分了“无变化”、“净城市增长”和“其他变化”三类区域,并实现了可视化制图与区域统计。代码还包含用于调试的像素计数函数和面积计算函数,最终将结果导出至Google Drive。; 适合人群:具备遥感与地理信息系统(GIS)基础知识,熟悉GEE平台操作及相关JavaScript语法的科研人员或高年级本科生、研究生;有一定编程经验的环境科学、城市规划等领域从业者; 使用场景及目标:①开展长时间序列城市扩展监测与空间分析;②实现土地利用变化分类与面积统计;③支持城市可持续发展与生态环境影响评估研究; 阅读建议:此资源以实际代码为基础,建议读者结合GEE平台动手实践,理解每一步逻辑,尤其是掩膜操作、面积计算与图像合成技巧,注意参数如分辨率、区域范围的适配性调整。
2026-01-14 20:21:45 3KB Google Earth Engine 遥感影像处理
1
《遥感概论》是北京师范大学开设的一门专业课程,主要涉及遥感技术的基本原理、应用及发展趋势。针对“remote sense”这一标签,我们可以深入探讨遥感在IT领域中的重要性和相关知识点。 遥感(Remote Sensing)是通过非接触方式获取地表信息的技术,它利用传感器接收来自地球表面的各种辐射信号,包括可见光、红外、微波等,然后通过数据处理和分析,转化为可理解的信息。遥感技术广泛应用于环境监测、资源调查、城市规划、灾害预警等多个领域。 1. **遥感系统的基本构成**:遥感系统由传感器、卫星平台、地面站和数据处理系统四部分组成。传感器是遥感的核心,用于接收和记录地表反射或发射的电磁波;卫星平台提供稳定的工作环境并控制传感器的工作参数;地面站负责接收、存储和传输遥感数据;数据处理系统则对原始数据进行预处理、分类、解译等,提取有用信息。 2. **遥感图像的类型与特点**:遥感图像主要有光学图像(如可见光、近红外和多光谱图像)和雷达图像(如SAR)。光学图像对光照条件敏感,适合于地物识别和分类;雷达图像不受天气影响,能穿透植被,适用于地形测绘和洪水监测。 3. **遥感图像解析技术**:包括目视解译和自动解译。目视解译依赖于专家经验,通过人眼直接识别图像特征;自动解译则运用计算机算法,如支持向量机(SVM)、随机森林(Random Forest)等,实现图像分类和目标检测。 4. **遥感在环境监测中的应用**:遥感可以实时监测大气污染、森林覆盖变化、水体状况等,例如,通过分析NDVI(归一化差值植被指数)可评估植被生长状况;通过监测热红外信号,可发现城市热岛效应。 5. **遥感在灾害管理中的作用**:在地震、洪涝、火灾等灾害发生后,遥感可以快速评估灾害范围,为救援决策提供依据。例如,通过比较灾前后的雷达图像,可精确测定地面位移,预测次生灾害风险。 6. **遥感与GIS的结合**:地理信息系统(GIS)可以整合遥感数据,进行空间分析和模型建立,帮助解决复杂的地理问题。遥感数据与GIS的集成,极大地提升了地理空间信息的获取和应用能力。 7. **遥感技术的发展趋势**:随着技术进步,高分辨率、多模态遥感卫星的发射,以及深度学习等先进技术的应用,遥感正朝着更高精度、更智能化的方向发展。 对于"遥感概论1"这个文件,很可能是历年考试的真题集,包含了关于遥感基本概念、理论和技术应用的题目,对于准备相关考试的学生来说,是宝贵的参考资料,可以帮助他们掌握遥感的核心知识,提高应试能力。通过深入研究这些真题,不仅可以了解考试的题型和难度,还能对遥感学科有更全面的理解。
2026-01-14 16:48:39 9.26MB remote sense
1
随着无人机技术的日益成熟和应用场景的不断拓展,无人机遥感已经成为测绘、农业、环境监测等多个领域的关键技术。在无人机遥感应用中,热红外图像由于其独特的功能,能够捕捉到地表的热辐射信息,从而进行温度分布和目标识别,这在夜间观测、火灾监测、农业病虫害检测等方面具有重要的作用。热红外图像通常以JPG格式存储,但是为了提高图像处理的质量和兼容性,经常需要将JPG格式转换为TIFF格式。 本压缩包提供的脚本,旨在解决多旋翼无人机,尤其是大疆系列无人机在航拍热红外图像时遇到的格式转换问题。大疆作为全球知名的无人机制造商,其产品线包括禅思H20NXTSH20系列、经纬M30系列以及御2行业进阶版Mavic等,这些产品广泛应用于商业和科研领域。无人机在执行航拍任务时,搭载的热成像摄像头能够获取到高精度的热红外图像数据,而为了后续的数据处理和分析,需要将这些图像数据转换成标准的TIFF格式。 该脚本的设计和应用,使得用户无需手动进行繁琐的格式转换工作,通过自动化处理过程大大提高了工作效率。它不仅支持大疆系列无人机,还兼顾了操作的简便性和高效性,使得即使是初学者也能快速上手,进行热红外图像的处理工作。 具体而言,该脚本可能包含了以下几个关键步骤: 1. 批量读取JPG格式的热红外图像文件。 2. 对图像进行必要的预处理,如调整亮度、对比度、去噪等。 3. 将处理后的图像进行格式转换,保存为TIFF格式。 4. 自动保存转换后的文件到指定文件夹,方便后续管理和分析。 除了脚本文件之外,压缩包中还包含了“附赠资源.docx”和“说明文件.txt”两个文件。附赠资源.docx文件可能包含一些额外的参考资料,比如热红外图像的处理原理、应用案例、操作手册等,以便用户能够更好地理解脚本的应用范围和操作细节。而说明文件.txt则可能提供了脚本安装、运行的具体指导,包括脚本依赖的软件环境、运行环境配置、常见的问题解答等,帮助用户快速解决在使用过程中遇到的问题。 该压缩包为大疆系列无人机用户提供了完整的热红外图像处理解决方案,从图像格式的转换到详细的操作说明,极大地便利了科研人员和专业技术人员在进行无人机遥感监测工作时的图像数据处理需求。
2026-01-14 13:38:33 48.61MB
1
内容概要:本文档展示了如何利用Google Earth Engine平台收集、处理和分析Sentinel 1 GRD SAR影像,以研究巴基斯坦洪水情况。首先筛选出特定区域(巴基斯坦)、极化方式(VV)和成像模式(IW)的影像集合,并选取了2021年7月18日至8月20日作为洪水前的图像,2022年同期作为洪水后的图像。接着对选定的两期影像进行裁剪和平滑处理,计算两者之间的差异,确定洪水淹没范围为差异值小于-3的区域,并将结果可视化展示。最后,将分析得到的洪水淹没图导出到Google Drive中。; 适合人群:遥感数据处理与分析人员,尤其是关注灾害监测的研究者或从业人员。; 使用场景及目标:①通过SAR影像分析洪水前后地表变化;②掌握Google Earth Engine平台的基本操作,包括影像筛选、裁剪、平滑处理及差异分析;③学习如何将处理结果导出以便进一步研究或报告。; 阅读建议:由于涉及到具体的代码实现,建议读者熟悉JavaScript语言以及Google Earth Engine API的使用方法,在阅读时可同步运行代码,以便更好地理解每个步骤的作用。
2026-01-14 11:58:36 2KB 遥感影像处理 地理信息系统 Earth
1
本文详细介绍了遥感图像变化检测的定义、处理流程、方法分类及主流技术。变化检测是指识别同一地理区域在不同时间拍摄的图像之间的差异,其处理流程包括数据选取、预处理、变化信息提取、后处理和精度评价。文章重点讨论了基于深度学习的方法,如卷积神经网络(U-Net、AlexNet、VGG、ResNet、FCN)、生成对抗网络(GANs)、注意力机制、Siamese网络和Transformer,以及多尺度和多分辨率方法。这些技术在遥感图像变化检测中表现出色,能够自动学习特征、提高检测精度和效率。文章还探讨了分辨率和尺度的概念辨析,并通过实例说明多尺度图像处理的应用。最后,总结了当前研究趋势和未来发展方向。 遥感技术是现代地理信息获取的重要手段之一,其能够在无需直接接触目标的情况下,对地表进行观测和数据采集。变化检测作为遥感领域的一项关键技术,指的是对同一地理位置在不同时间点获取的遥感图像进行比较分析,识别出地表覆盖、土地利用、环境变化等信息的过程。在变化检测中,数据选取阶段需要选择具有时间对比价值的遥感图像,预处理步骤包括对图像进行辐射校正、几何校正、图像增强等,以消除不同图像之间的系统误差和随机误差。变化信息提取是指运用特定算法从预处理后的图像中提取变化区域或变化信息,后处理则包括对提取结果进行平滑、去噪、分类等,而精度评价则是对变化检测结果的准确性进行定量描述。 在遥感图像变化检测方法分类中,基于深度学习的方法近年来受到广泛关注。深度学习方法通过构建复杂的网络结构,能够自动提取图像特征并进行学习。例如卷积神经网络(CNN)是深度学习方法中的一种,已经被广泛应用于图像的特征提取和识别中。U-Net、AlexNet、VGG、ResNet、FCN等都是CNN的不同架构。生成对抗网络(GANs)则是一种由生成网络和判别网络组成的方法,它可以通过对抗训练达到图像生成和特征提取的目的。注意力机制能够让网络在处理图像时更加关注重要特征,提高模型性能。Siamese网络擅长于对相似性进行评估,而Transformer是一种能够处理序列数据的模型,也被引入到图像处理中,特别是多尺度和多分辨率的图像处理。 多尺度和多分辨率方法是指在遥感图像处理中,采用不同尺度和分辨率的图像进行分析,从而获取更为丰富的地表信息。例如,在进行大范围的地表变化监测时,可能需要结合不同分辨率的图像来提高整体的监测精度。多尺度处理能够使我们从宏观到微观不同层面上分析地表变化,而多分辨率处理则允许我们综合不同细节层次上的信息。这些方法在实际应用中可以提供更加灵活和准确的分析结果。 文章中还提到,分辨率和尺度是遥感图像处理中的两个重要概念。分辨率通常是指图像的细节程度,即图像中最小的可分辨细节的大小。而尺度则更多指的是研究对象的大小,与观察视角和数据采集的距离有关。这两种概念的区别和联系对于理解遥感图像的分析至关重要。 随着技术的发展,遥感图像变化检测技术不断进步,文章最后对当前研究趋势进行了总结。例如,云计算和大数据技术的引入为遥感数据的存储、处理和分析带来了新的可能性。边缘计算的发展也使得遥感图像数据可以在更靠近数据源的地方进行预处理和分析,减少传输延迟和数据丢失。人工智能特别是深度学习方法在遥感图像处理中的应用,显著提升了变化检测的自动化和智能化水平。 此外,遥感图像变化检测在生态环境保护、城市规划、灾害监测、农业产量评估等多个领域都具有广泛的应用前景。这些应用不仅能够提供决策支持,还有助于提高资源管理的效率和效果。 随着遥感技术的持续进步,以及深度学习等先进技术的结合应用,遥感图像变化检测正向着更高精度、更大尺度、更强智能化的方向发展。未来,遥感图像变化检测将成为地理信息系统、智能城市、智慧农业等领域不可或缺的一部分,并在各种实际问题的解决中扮演着越来越重要的角色。
2026-01-13 19:27:12 6KB 软件开发 源码
1
本文介绍了利用Python编程实现遥感图像最小距离分类的方法。最小距离分类法是一种基本的分类方法,通过计算未知类别向量到已知类别中心向量的距离,将待分类向量归为距离最小的类别。实验分为ENVI实现和Python编程实现两部分。ENVI实现包括图像文件打开、样本选择、最小距离分类和混淆矩阵计算等步骤。Python编程实现则包括类别确定、特征提取、特征中心计算、归一化处理和距离准则判定等步骤。文章还提供了详细的Python代码,包括数据读取、特征提取、距离计算和结果输出等模块。实验结果表明,编程实现的结果与ENVI分类结果相似,精度均在85%以上。最小距离分类法原理简单、计算速度快,但由于仅考虑类别均值而忽略方差和协方差,分类精度有限,适用于快速浏览分类概况。 在遥感图像处理领域,最小距离分类法是一种基础且高效的分类技术,其核心思想是将遥感图像中的像素点根据其特征与已知类别的中心特征进行比较,选择距离最小的类别作为该像素点的分类结果。这种方法简单直接,计算效率高,特别适合于分类样本数量较多或者需要快速处理的场景。 在实现最小距离分类时,首先需要确定分类的目标类别,这通常需要依据图像的先验知识或统计特性来设定。接着,从遥感图像中提取出相关的特征,这些特征可能包括光谱特征、纹理特征等,这些特征的选择和提取对于分类结果的准确性至关重要。 为了进一步提高分类精度,特征中心的计算是必不可少的步骤。特征中心一般是指各类别特征向量的均值,它们代表了各类别的中心位置,是进行最小距离计算的基准点。在计算特征中心后,还需要对数据进行归一化处理,以消除不同特征量纲的影响,确保距离计算的公平性和准确性。 距离计算是整个分类过程的核心,常用的准则包括欧几里得距离、曼哈顿距离等。通过计算每个像素点到各类别中心的距离,根据距离最小原则,将像素点归类到最近的类别中。为了验证分类结果的准确性,还需要利用混淆矩阵等方法对分类效果进行评估,混淆矩阵能详细反映各类别分类的准确率和遗漏率。 在实际操作中,ENVI软件常被用于遥感图像的处理和分类,它提供了一套完整的操作流程和可视化工具,便于用户进行样本选择、特征提取和分类操作。而Python编程实现则提供了更高的灵活性和可扩展性,程序员可以根据具体需要编写算法和处理流程,其优势在于能够集成更多的算法和处理工具,实现复杂的数据处理和分析任务。 通过对比ENVI软件实现与Python编程实现的最小距离分类方法,我们可以发现,尽管软件提供了方便快捷的途径,但Python编程实现的灵活性和可定制性使其在处理特定问题时更具优势。实验结果表明,Python编程实现的精度可以达到85%以上,这与ENVI软件的分类精度相当。不过,由于最小距离分类法仅仅考虑了类别均值而未考虑方差和协方差,因此其分类精度存在一定的局限性,对于某些类别区分度不高的情况可能不够理想。 最小距离分类法以其原理的简单性和计算的快速性,在遥感图像处理中占有一席之地。它适用于需要快速分类或初步分类的场景,尤其在对分类精度要求不是极端严格的情况下。然而,在面对更为复杂的图像分类任务时,可能需要考虑采用更为复杂和精细的分类方法。
2026-01-10 23:30:44 2.37MB Python编程 模式识别 聚类分析
1
内容概要:本文介绍了如何利用Google Earth Engine(GEE)平台与ACOLITE工具进行大气校正处理遥感影像的完整流程。通过Python代码示例,展示了从初始化Earth Engine、定义研究区域并筛选特定时间范围内的Sentinel-2影像数据,到配置大气校正参数并调用ACOLITE模块完成影像处理的全过程。重点包括设置气溶胶校正方法、水汽含量、臭氧层厚度等环境参数,并选择水质反演参数如悬浮物浓度和叶绿素a含量,最终输出经过大气校正后的影像集合数量。; 适合人群:具备遥感图像处理基础知识及Python编程能力的科研人员或环境监测相关领域的技术人员;熟悉GEE平台操作者更佳; 使用场景及目标:①应用于湖泊、河流或近海区域的水质遥感监测;②实现批量Sentinel-2影像的大气校正与水体光学参数反演;③支持环境变化分析、生态评估及污染监控等研究任务; 阅读建议:建议读者结合GEE开发环境实际运行代码,理解各参数含义并根据具体应用场景调整设置,同时可扩展学习ACOLITE更多反演模型以提升应用深度。
2026-01-07 10:47:31 933B Python 大气校正 遥感图像处理 Earth
1
内容概要:本文档提供了一段用于处理Sentinel-1卫星数据的Google Earth Engine (GEE)脚本。该脚本首先定义了感兴趣区域(Unteraargletscher),并设置了日期范围为2024年8月1日至8月31日。接着,从COPERNICUS/S1_GRD数据集中筛选出符合指定条件的图像,包括位置、日期、成像模式(IW)和轨道方向(降轨)。进一步筛选出同时包含VV和VH极化通道的图像,并统计符合条件的图像数量。最后,对VH通道的数据进行了最小值、平均值、最大值、中位数和首张图像的合成处理,并将结果可视化显示在地图上。 适合人群:具备一定遥感数据处理和编程基础的研究人员或工程师,尤其是对Sentinel-1数据和Google Earth Engine平台感兴趣的用户。 使用场景及目标:①筛选特定时间段和地理位置的Sentinel-1图像;②提取并处理VV和VH极化通道的数据;③通过不同的统计方法(如最小值、平均值等)生成合成图像并进行可视化展示。 阅读建议:在阅读此脚本时,建议读者熟悉Google Earth Engine的基本操作和Sentinel-1数据的特点,同时可以尝试修改参数(如日期范围、地理位置等)来探索不同条件下的数据变化。
1