针对高等院校网络舆情分析与危机舆情预警的需求,文中对语义情感分析方法进行了研究。通过结合深度学习中循环神经网络(CNN)和心理学领域的注意力机制模型(Attention),提出了ATRNN网络。该网络使用长短期记忆结构(LSTM)作为RNN隐藏层的基本单元,可以处理任意长度的语义信息。网络通过引入Dropout机制,避免网络训练中的过拟合现象,提升训练效果。为了评估模型效果,文中在NLPCC的开放数据集上进行测试。相较于RNN网络,在正面情绪文本上,准确率、召回率和F1可以提升3.3%,1.7%和2.5%;在负面情绪文本上,可以提升4.4%,4.5%和4.4%。
1
1.对微博的高校舆情话题进行爬取并保存,内容包括用户名、发布时间、发布内容、点赞数、评论数、转发数。 2.对爬取的信息进行去重和预处理,去掉爬取到的内容相同的博文,并将博文内容中的话题、用户名过滤掉,以便进行词频统计。 3.对经过预处理的数据进行分词和词频统计,生成词云图。 4.先对五百多条数据进行人工标记作为训练集,再将所有数据都进行标记以便计算准确率,随后运行程序对所有数据进行贝叶斯情感倾向分析,根据分析结果和人工标记结果进行对比,计算准确率。 5.对实验方法进行分析和改进,或提出改进方案。 包含源码:爬虫+分词+数据预处理+词云+朴素贝叶斯情感倾向分析+可视化结果显示
2022-07-01 21:03:39 10.81MB 机器学习 情感倾向分析 高校舆情