针对标准飞蛾扑火优化算法存在的易陷入局部最优陷阱、全局寻优能力不足的问题,借鉴混沌序列、模拟退火算法和遗传算法,提出Tent混沌和模拟退火改进的飞蛾扑火优化算法。首先,通过Tent混沌序列初始化种群,增加种群多样性;然后对当前最优解增加扰动产生新解,并与当前最优解按比例杂交相加,根据模拟退火算法中的Metropolis准则判断是否接受杂交后的新解,最终获得最优解。分别使用复杂高维基准函数和航迹规划问题测试算法性能。其中,6个复杂基准函数寻优测试结果表明,对于10维基准函数,该算法经过约0.25秒收敛到最优值;对于50维基准函数,该算法经过约0.5秒收敛到最优值。与标准飞蛾扑火优化算法和其它智能优化算法相比,该算法能够有效跳出局部最优解,寻优精度更高,收敛速度更快。航迹规划仿真表明,对有4个禁飞区和2个威胁源的空域环境,该算法经过大约100次迭代可以得到最优航迹,与标准飞蛾扑火优化算法相比精度更高,具有实际应用价值。因此,该算法具有更好的寻优性能。
1