matlab实现mfo代码 ,好用的代码,真实有效
2023-05-16 16:02:45 207KB matlab 飞蛾扑火优化算法 mfo MFO代码
1
飞蛾扑火优化算法(Moth-Flame Optimization,MFO)是澳大利亚学者Seyedali Mirjalili于2015年提出的一种受自然生物启发的智能优化算法。代码里面包含了20几种基准测试函数,用来测试算法的性能。 该算法的主要灵感来自于飞蛾被称为“横定向”的导航方法。飞蛾在夜间飞行时相对于月亮保持一个固定的角度,这是一种非常有效的远距离直线飞行机制,但是在人造光周围,飞蛾却容易陷入致命的螺旋路径。作者就是模拟了飞蛾的这种特点。
2022-06-11 18:09:12 5KB 优化算法 matlab 机器学习
飞蛾扑火优化(Moth-flame optimization,MFO),由Seyedali Mirjalili在2015年提出,为优化领域提供了一种新的启发式搜索范式:螺旋搜索。 飞蛾在夜间有一种特殊的导航方式:横向定向。即它会与月亮(光源)保持一定的角度飞行,从而能够保持直线的飞行路径,但是,这种方式只在光源离飞蛾较远的情况下才有效。当有人造光源存在时,飞蛾会被人工灯光所欺骗,一直保持与人造灯光相同的角度飞行,由于它与光源的距离过近,它飞行的路径已经不是直线,而是一种螺旋的路径。
2022-04-08 14:03:56 7KB matlab 算法 开发语言
飞蛾扑火优化算法MFO,附带部分其他优化算法的论文[eg:布谷鸟算法],可用于神经网络参数的优化等应用场景
2022-04-06 03:11:12 20.26MB 算法
1
针对标准飞蛾扑火优化算法存在的易陷入局部最优陷阱、全局寻优能力不足的问题,借鉴混沌序列、模拟退火算法和遗传算法,提出Tent混沌和模拟退火改进的飞蛾扑火优化算法。首先,通过Tent混沌序列初始化种群,增加种群多样性;然后对当前最优解增加扰动产生新解,并与当前最优解按比例杂交相加,根据模拟退火算法中的Metropolis准则判断是否接受杂交后的新解,最终获得最优解。分别使用复杂高维基准函数和航迹规划问题测试算法性能。其中,6个复杂基准函数寻优测试结果表明,对于10维基准函数,该算法经过约0.25秒收敛到最优值;对于50维基准函数,该算法经过约0.5秒收敛到最优值。与标准飞蛾扑火优化算法和其它智能优化算法相比,该算法能够有效跳出局部最优解,寻优精度更高,收敛速度更快。航迹规划仿真表明,对有4个禁飞区和2个威胁源的空域环境,该算法经过大约100次迭代可以得到最优航迹,与标准飞蛾扑火优化算法相比精度更高,具有实际应用价值。因此,该算法具有更好的寻优性能。
1
分享了飞蛾扑火优化算法的源代码及对应的文章,亲测有效,欲求更多算法可进入空间查看