创建该数据集的目的是促进卷积神经网络和计算机视觉的研究。 由于当前与冠状病毒大流行相关的背景,人类必须适应新的现实。口罩的使用在世界各国已成为普遍现象。 内容 该数据集有 3829 张图像,分为两个不同的类别: - 带有口罩 - 不带有口罩 该数据集的目的是促进图像分类模型的实现。 在当前全球抗击冠状病毒大流行的背景下,口罩已成为人们日常生活中的必备品。为了适应这一新的现实,推动计算机视觉和卷积神经网络技术的发展,特别创建了一个关于口罩检测的数据集。该数据集包含3829张图像,这些图像被明确划分为两类:一类是人们佩戴口罩的情况,另一类则是人们未佩戴口罩的情况。 数据集的构建是计算机视觉研究中的一项基础工作,它为图像分类模型的训练提供了必要的素材。在当前的公共卫生背景下,这个特定的数据集不仅有助于检测人群中的口罩佩戴情况,而且还能服务于智能监控系统,提高公共安全水平。 对于卷积神经网络(CNN)的研究人员来说,这样的数据集是一个宝贵的资源。CNN是一种深度学习算法,特别适用于图像处理领域,它能够从图像中识别出复杂的模式。在本数据集中,CNN可以被训练来区分和识别出佩戴口罩和未佩戴口罩两种不同的状态。通过这种训练,模型能够学会如何识别不同的面部特征,并且能够在现实世界的应用中快速准确地做出判断。 图像识别技术的进步,尤其是在面部识别领域的应用,已经在多个领域显示出其潜力,例如在安全检查、个性化推荐系统、增强现实等场合。本次创建的数据集在推动口罩检测研究的同时,也将对这些领域的技术进步产生积极影响。 此外,这个数据集还可能被用于监测特定环境中的口罩佩戴规则的遵守情况,如在公共交通工具、商场、学校等公共场所,相关软件可以通过分析监控摄像头实时捕获的画面,快速准确地识别出哪些人遵守了佩戴口罩的规定,哪些人没有,从而帮助管理人员更好地执行公共卫生规定。 为了进一步提高图像识别技术的准确性和实用性,研究人员会利用各种技术手段对数据集中的图像进行增强和预处理。例如,通过旋转、缩放、裁剪等手段扩充数据集的多样性;采用图像增强技术改善图像质量,降低环境因素对识别结果的干扰;采用数据标注技术明确图像中的关键信息,如人的面部位置等。所有这些努力都是为了提高模型的泛化能力和识别准确性。 这个关于口罩检测的数据集不仅对当前的疫情监测具有现实意义,而且在推动计算机视觉技术发展方面也具有重要的研究价值。通过对这个数据集的深入研究,可以期待未来出现更加智能和高效的图像识别系统,为社会带来更多的便利和安全保障。
2025-08-26 20:08:26 126.69MB 数据集 图像识别
1
遥感技术在航空领域的应用日益广泛,其中机场跑道作为航空安全的重要组成部分,其状态监测显得尤为重要。为提高遥感监测的自动化和智能化水平,数据集的作用不可或缺。《遥感机场跑道检测数据集VOC+YOLO格式8116张2类别》文档提供了一个专为遥感影像中机场跑道检测设计的数据集。该数据集具有以下几个关键知识点: 该数据集采用Pascal VOC和YOLO两种标注格式。Pascal VOC格式是一种广泛使用的数据格式,它提供了XML格式的标注文件,用于描述图像中各类物体的位置和类别信息。而YOLO格式则是一种流行的实时对象检测系统,它通过txt文件来标注物体的类别和位置,以方便YOLO训练算法的使用。这两种格式的结合使得数据集能够适用于多种对象检测模型的训练和测试。 数据集包含了8116张标注好的遥感图片,每张图片都对应一个VOC格式的xml标注文件和一个YOLO格式的txt标注文件。这意味着,除了图片本身,还有8116个详细的标注文件,为算法的精确训练提供了可能。图片及标注文件的数量之多,保证了数据集在深度学习模型训练中的丰富性和多样性。 标注类别共有两个,分别是“airport”(机场)和“runway”(跑道)。机场类别标注了17251个矩形框,跑道类别标注了27810个矩形框,总计45061个矩形框。这表明数据集在机场和跑道对象的覆盖面上下了大功夫,确保了足够的标注密度和详尽程度。 标注工具使用的是labelImg,这是个广泛用于图像标注的开源工具,它支持生成Pascal VOC格式的标注文件。标注规则是使用矩形框来圈定机场和跑道,这与遥感图像中机场跑道目标的识别特征相匹配。 数据集的使用说明中还强调了重要说明和特别声明。重要说明暂无,而特别声明则指出数据集本身不对训练出来的模型精度提供任何保证。这表明数据集提供的是一个基准材料,模型精度的高低需要使用者根据具体算法和训练过程来保证。同时,数据集提供了准确且合理的标注,以确保训练图像质量。 数据集提供了图片预览和标注例子,以便用户更直观地了解数据集的内容和标注的质量。数据集的下载链接也一并给出,方便用户获取完整数据进行学习和研究。 该数据集对于研究人员来说具有较高的实用价值,能够为机场跑道的遥感监测与分析提供坚实的数据支持。通过对这些标注数据的深度学习和分析,研究人员可以开发出更为精确高效的机场跑道监测算法,从而提高航空安全的保障水平。
1
本文档介绍了基于YOLOv11模型的安全帽检测系统的开发,旨在识别各种颜色的安全帽。文中涵盖了使用ONNX格式的模型、Tkinter制作的用户界面以及一系列辅助功能如数据增强的方法、置信度调整等细节,并提供了从环境搭建到最终实现的整体指导和代码示例。此外还涉及系统未来的改进步骤。该系统不仅具备良好的鲁棒性和实用性,并且具有很强的灵活性和扩展性。 适合人群:具有基本编程背景并对机器学习尤其是计算机视觉感兴趣的研究人员和从业者。 使用场景及目标:适用于工地上各类环境中对工作人员佩戴情况的有效监测,旨在提高施工场所的安全管理效能;同时也适用于研究人员学习YOLOv11及相关检测技术。 其它:系统在未来有望发展成为实时监控系统,并支持多任务处理,进一步增加其实用价值。
2025-08-26 15:15:03 38KB 深度学习 Tkinter 安全帽检测 ONNX
1
python-for-android打包的apk,安装到android设备中不能使用pandas;应用此补丁可以修正pandas的编译配置,使打包的apk安装到android设备中可以正常使用pandas。
2025-08-26 14:02:58 2KB android pandas pythonforandroid 数据分析
1
在当前的深度学习与计算机视觉领域,模型的转换和应用是研究的热点之一。特别是在物流和快递行业中,对于包裹的自动识别和分类系统的需求日益增长。这些系统能够帮助快递公司提高分拣的效率,减少人工成本,提升客户满意度。 本博客中所提到的onnx模型,是一种开放的神经网络交换格式(Open Neural Network Exchange),它允许开发者将训练好的模型部署到不同的平台上进行推断。ONNX得到了众多深度学习框架的支持,包括PyTorch、Caffe2、Microsoft Cognitive Toolkit等,这大大方便了模型在不同环境下的迁移和应用。 文章中提到的快递实例分割任务,指的是对快递包裹进行精确的定位与识别,将其从背景中分离出来,并标注其位置和类别。这是计算机视觉中一种复杂且实用的图像分割技术。实例分割不仅仅是识别物体的类别,更重要的是区分同类别的不同实例。 在选择模型架构时,本博客聚焦于基于ultralytics训练的yolo11s-seg。YOLO(You Only Look Once)是一种流行的目标检测算法,它将目标检测任务作为单个回归问题来解决,能够实时地检测图像中的目标。YOLO模型以速度快,实时性强而著称。YOLOv3是YOLO系列中的一个里程碑版本,它在保持速度的同时显著提高了检测的准确性。 而yolo11s-seg则可能是一种针对快递包裹实例分割任务优化的YOLO版本。在这篇文章中,很可能探讨了如何将YOLOv3进行调整和训练,使其能够用于区分和定位快递包裹,以及如何将训练好的模型转换为onnx格式,以便在不同的平台上部署。 由于本段文字需要超过1000字,故仅讨论了onnx模型和yolo11s-seg在快递包裹实例分割中的应用。实际上,该话题涉及的范围更广,包括但不限于图像预处理、数据增强、损失函数的选择、训练策略、后处理等。为了实现准确的实例分割,研究者和工程师们还需要考虑这些方面,以提高模型的泛化能力和分割精度。 此外,文中提到的“package-seg”可能是一个包含处理好的快递包裹数据集,或者是执行实例分割的程序包。这个文件夹可能包含了针对特定场景或任务优化的代码和数据,用于训练和评估yolo11s-seg模型。 快递包裹实例分割是结合了目标检测与实例分割的技术挑战,onnx模型格式为模型跨平台部署提供了便利,而yolo11s-seg则是为了适应快递领域特定需求而优化的模型架构。通过本博客的探讨,我们可以了解如何将深度学习模型应用于快递物流,以实现包裹的自动化识别和分拣。
2025-08-26 13:48:26 138.79MB
1
"lt9211c全方案资料:涵盖原理图、PCB设计、源代码、调试手册及数据手册,详解常用寄存器说明",lt9211c方案全套资料,包括参考原理图,pcb,源代码,调试手册,datasheet,常用寄存器说明。 ,核心关键词:lt9211c方案;全套资料;参考原理图;pcb;源代码;调试手册;datasheet;常用寄存器说明;,《LT9211C方案全套资料汇编》 lt9211c是一款高性能的电子设备方案,它的全方案资料包含了丰富的信息,涵盖了从原理图、PCB设计、源代码、调试手册到数据手册的每一个细节,而且对常用寄存器的使用和说明也有详尽的解读。 在这些资料中,原理图是理解电子设备工作原理的基础,它详细展示了电路的连接和元件的布局。而PCB设计则是将原理图转化为实际可制造的印刷电路板布局图,对于电子设备的设计和生产至关重要。源代码部分则为开发者提供了设备的控制逻辑和算法,使开发者能够根据自身需求进行修改和优化。 调试手册为开发者在产品测试和调试阶段提供了宝贵的指导,包括了可能出现的常见问题和解决方案。数据手册(datasheet)是了解电子设备性能参数和技术规格的关键文件,常用寄存器说明则帮助开发者更好地理解和使用设备的内部寄存器,从而实现对设备更加精细的控制。 此外,文件名称列表中提到的“方案全套资料详解”和“技术解读”文档,以及“深入探讨方案全套资料解析与应用”等内容,可能包含了对lt9211c方案更深层次的介绍和分析,对理解整个方案的技术细节、应用场景以及如何将方案应用到实际项目中有着重要的指导作用。 lt9211c方案的全套资料,为开发者提供了一套完整的参考资料,让开发者可以全面地掌握方案的设计理念、技术细节和实际应用,这对于提升开发效率和产品质量具有重要意义。
2025-08-26 13:46:16 600KB 开发语言
1
军事目标检测数据集是计算机视觉领域内一个特殊的研究方向,它主要致力于从各种图像和视频资料中识别和定位军事目标。这类数据集通常包含了不同种类的军事装备、人员和设施等,用于训练和评估目标检测算法的性能。在军事应用中,目标检测的重要性不言而喻,它可以用于无人侦察、自动导航、威胁评估等多个方面。 在军事目标检测数据集中,通常会包含大量的标记数据,这些数据对于训练深度学习模型至关重要。由于军事装备的特征和外观复杂多变,因此数据集中的图像往往需要覆盖多种场景、光照和天气条件,以确保模型的鲁棒性和适应性。例如,数据集中可能会有坦克、飞机、舰船、导弹发射器等不同装备的图片,同时也会有伪装、隐蔽在树林或建筑物后的目标图片,以提高模型在复杂环境下的识别能力。 由于军事领域的特殊性和敏感性,这类数据集往往不容易获取。它们可能由政府或军方研究机构创建,也可能由相关的学术机构或商业公司进行采集和整理。数据集的构建不仅需要大量的技术投入,还需要严格的安全措施和合法合规的使用框架。在公开发布时,可能需要对图像内容进行脱敏处理,以保护军事机密和人员安全。 数据集的使用目的非常广泛,除了直接的军事应用外,还有助于促进计算机视觉领域的基础研究和技术创新。例如,在自动驾驶汽车、机器人视觉、视频监控等领域,目标检测技术同样有广泛应用,因此从军事目标检测数据集中提取出的算法和技术可以迁移到这些民用领域。 除了图像数据之外,军事目标检测数据集还可能包括相应的标注信息,如边界框(bounding box)坐标、目标类别标签、场景描述等。这些标注信息对于算法的学习和评估至关重要,能够帮助模型准确理解目标在图像中的位置和特征。标注工作通常由专业的标注团队完成,需要具备专业的知识和经验,以确保标注的准确性和一致性。 军事目标检测数据集的发布和使用往往伴随着一系列的法律和伦理问题。对于研究者和开发者来说,正确使用数据集并遵守相关法律法规是基本的职业道德。此外,随着技术的发展和应用领域的扩大,如何在保护隐私和促进技术发展之间找到平衡点,也是一个需要不断思考和解决的问题。
2025-08-25 23:38:04 391.64MB 数据集
1
FITEQL 4.0是一款用于化学平衡计算和数据拟合的软件。它的主要功能是在不同条件下对化学平衡进行计算,并输出平衡状态下的物质浓度、反应度和平衡常数等数据。此外,FITEQL还具有数据拟合和参数优化功能,可以帮助研究人员对实验数据进行分析和处理。 FITEQL 4.0软件具有以下特点: 支持多种化学平衡计算方法:FITEQL 4.0可以进行离子强度、活度系数、活度模型和界面化学等多种平衡计算方法,用户可以根据需要选择适合自己的计算方法。 提供可视化的数据处理界面:FITEQL 4.0提供了一个直观的界面,可以方便用户进行数据输入、计算和可视化输出等操作,降低了用户学习成本。 支持批量处理:FITEQL 4.0支持批量处理多组数据,可以提高计算效率和工作效率。 提供丰富的数据拟合功能:FITEQL 4.0支持多种拟合方法,包括线性和非线性回归、最小二乘法、最大似然法等,可以帮助用户对实验数据进行分析和处理。 总之,FITEQL 4.0是一款功能强大、易于使用的化学平衡计算和数据拟合软件,适用于化学、环境科学、地球科学等多个领域的研究 本安装包,需要在16、32位系统运行
2025-08-25 21:36:52 314KB 资源下载 数据拟合
1
随着人工智能技术的快速发展,深度学习模型在诸多领域展现出了卓越的性能,其中活体检测技术就是其应用的代表之一。活体检测旨在区分图像或视频中的人类面部是否属于真实在场的个体,而非照片、视频或其他替代品的展示,这对于提升安全系统的可靠性具有重要意义。 在本项研究中,开发者选择了一个名为CelebA-Spoof的数据集进行活体检测模型的训练。CelebA-Spoof数据集是由真实人脸图像和各类伪造的人脸图像组成,包含了丰富的面部变化,如不同的表情、角度、光照条件等,这为模型提供了充分的学习材料。通过训练这一数据集,模型能够学习到区分真实与伪造面部的关键特征。 在训练过程中,使用了深度学习中的卷积神经网络(CNN)架构,这是一种在图像识别领域表现出色的神经网络结构。经过多次迭代训练,模型逐渐学会了从输入的面部图像中提取有效的信息,并最终达到了在验证集上的高准确率——93.47%。这一准确率表明了模型在区分真实面部和伪造面部方面具有很高的判别能力。 为了进一步提高模型的实用性,研究者将训练好的模型导出为ONNX(Open Neural Network Exchange)格式。ONNX是一种开放式的模型格式,它使得模型能够在不同的深度学习框架之间自由转换,便于部署到各种硬件和软件平台上。例如,一个ONNX模型可以在Windows系统上通过Caffe2或ONNX Runtime运行,也可以在Android设备上通过NCNN库运行,大大提高了模型的应用灵活性和便利性。 在实际应用中,一个训练有素且高效易用的活体检测模型能够在门禁、支付验证、在线考试监控等多个场景中发挥作用。例如,在智能门禁系统中,系统通过活体检测技术可以有效防止不法分子利用照片或其他伪造手段进行欺骗;在在线支付场景中,通过活体检测确保交易双方身份的真实性,增加交易的安全性。 本项研究通过深度学习方法,利用CelebA-Spoof数据集训练出一个高准确率的活体检测模型,并成功将其转换为ONNX格式,为后续的模型应用提供了极大的便利。这不仅展示了深度学习在活体检测领域的巨大潜力,也为相关技术的落地应用提供了新的可能。
2025-08-25 17:11:49 5.13MB
1
脑机接口技术是一种直接将大脑与计算机或其他电子设备相连接的技术,它通过解读大脑的电信号来执行特定的操作或与外界环境进行交互。随着科技的进步,脑机接口技术在医疗康复、人机交互、智能控制等领域的应用越来越广泛。其中,脑电图(EEG)数据由于其非侵入性和低成本的优点,成为研究脑机接口系统的首选数据类型。然而,原始的脑电数据往往包含许多干扰信号,如眼动、肌电干扰等,因此需要经过一系列的预处理步骤,以便于后续分析。 在进行脑电数据的预处理时,通常需要执行以下几个关键步骤: 1. 信号采集:这一阶段涉及使用脑电图机记录大脑活动产生的电位变化。通常,使用多通道电极阵列覆盖头皮表面,采集不同脑区的电信号。 2. 信号去噪:由于环境噪音、设备故障、生理活动(如眨眼、肌肉收缩)等因素,原始脑电信号中夹杂着大量噪声。预处理时,常用带通滤波器去除特定频率范围之外的噪声,并利用独立成分分析(ICA)等算法分离出脑电信号和噪声成分。 3. 脑电伪迹去除:脑电伪迹指的是非脑电活动产生的电信号,例如眼动导致的伪迹。去除这些伪迹需要识别并删除这些信号段落,或采用特定算法对伪迹进行校正。 4. 特征提取:处理完噪声后,需要从脑电数据中提取有用的特征,这些特征能够反映大脑的活动状态。常用的特征包括功率谱密度、小波变换系数、同步性等。 5. 标准化:为了保证不同时间、不同环境条件下的数据具有可比性,需要对脑电信号进行标准化处理。 在上述预处理完成后,得到的数据可以用于运动想象BCI(Brain-Computer Interface)系统的后续处理,这类系统能够识别用户的大脑活动并将其转化为特定的计算机命令。开放源代码的脑机接口平台,如openBMI,为研究者提供了一个共享和比较不同预处理和分类算法的平台。 由于脑机接口领域的研究与应用日益增长,开放脑电数据集对于算法的验证和比较具有重要意义。通过开放的脑电数据集,研究者可以更加透明地分享他们的发现,以及进一步提高脑机接口系统的性能和可靠性。 预处理是脑机接口研究中不可或缺的一环,它直接影响到系统的性能和最终应用的实际效果。因此,深入研究和优化预处理算法,是推动脑机接口技术进步的关键。
2025-08-25 16:57:01 18KB 脑机接口 数据处理 运动想象
1