Python 爬虫数据可视化分析大作业 1. 项目概述 本项目旨在使用Python爬虫技术从互联网获取数据,并对这些数据进行可视化分析。整个项目将分为以下几个步骤:数据获取、数据清洗、数据分析和数据可视化。最终,我们将生成一个详细的文档,展示整个过程和分析结果。 2. 数据获取 我们将使用Python的requests库和BeautifulSoup库来爬取数据。目标网站为某电商平台,我们将获取商品的价格、评价数量和评分等信息。
2024-12-22 18:39:29 2.72MB python 爬虫
1
在本项目中,“CCF大数据与计算智能比赛-个贷违约预测”是一个聚焦于数据分析和机器学习领域的竞赛,目标是预测个人贷款的违约情况。这个压缩包“CCF2021-master.zip”可能包含了参赛者所需的所有数据、代码示例、比赛规则及相关文档。下面我们将深入探讨这个比赛涉及的主要知识点。 1. **大数据处理**:大数据是指海量、持续增长的数据集,通常具有高复杂性,需要特殊的技术和工具进行存储、管理和分析。在这个比赛中,选手可能需要处理来自多个来源的大量个人贷款数据,这可能涉及到Hadoop、Spark等大数据处理框架,以及SQL等数据库查询语言。 2. **数据预处理**:在进行机器学习模型训练前,数据预处理至关重要。这包括数据清洗(去除缺失值、异常值)、数据转化(如归一化、标准化)、特征工程(创建新的预测变量)等步骤。选手需要对数据有深入理解,以提取有价值的信息。 3. **特征选择**:个贷违约预测的关键在于选择合适的特征,这些特征可能包括借款人的信用历史、收入水平、职业、债务状况等。特征选择有助于减少噪声,提高模型的解释性和预测准确性。 4. **机器学习模型**:常用的预测模型有逻辑回归、决策树、随机森林、支持向量机、梯度提升机以及神经网络等。选手需要根据问题特性选择合适的模型,并进行超参数调优,以提高模型性能。 5. **模型评估**:模型的性能通常通过准确率、精确率、召回率、F1分数、AUC-ROC曲线等指标来评估。在个贷违约预测中,由于违约的罕见性,可能需要更关注查准率(Precision)和查全率(Recall)的平衡。 6. **模型集成**:通过集成学习,比如bagging(如随机森林)、boosting(如XGBoost、LightGBM)或stacking,可以提高模型的稳定性和泛化能力。选手可能会采用这些方法来提升预测精度。 7. **并行计算与分布式系统**:由于数据量大,可能需要利用并行计算和分布式系统加速数据处理和模型训练。例如,Apache Spark支持在内存中进行大规模数据处理,能显著提高计算效率。 8. **实验设计与迭代**:在比赛中,选手需要设计有效的实验方案,不断测试和优化模型,这可能涉及到交叉验证、网格搜索等技术。 9. **数据可视化**:利用工具如Matplotlib、Seaborn或Tableau进行数据探索和结果展示,可以帮助理解数据模式并有效沟通模型的预测结果。 10. **代码版本控制**:使用Git进行代码版本控制,确保团队协作时代码的一致性和可追踪性。 这个比赛涵盖了大数据处理、机器学习、数据预处理、模型评估等多个方面,挑战参赛者的数据分析能力和解决问题的综合技能。
2024-12-20 20:24:20 40MB
1
本文实例为大家分享了python实现多层感知器MLP的具体代码,供大家参考,具体内容如下 1、加载必要的库,生成数据集 import math import random import matplotlib.pyplot as plt import numpy as np class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r def sgn(self,x): if(x>0): return 1;
2024-12-18 23:08:06 65KB python python算法 多层感知器
1
此资料是一套包含12000多条历史上的今天数据的SQL数据库文件zip压缩包下载,可直接下载导入sql数据库进行使用。“历史上的今天”数据库是一个记录并展示历史上每一天所发生的重要事件、人物逝世、科技进步等信息的数据库。这类数据库通常由专业的历史研究机构、图书馆或科技公司维护,旨在帮助用户快速了解历史上的重要时刻,增强对历史的认知和理解。本资料中除了包含历史上的今天数据外,还有每年365天的的每日随缘花语和每日出生的人的星座和此星痤当天的主要特征。希望对大家有用。
2024-12-18 12:11:55 11.38MB sql
1
本数据集包含大量的交通事故信息,可用于预防交通事故的发生 数据描述 纽约市警察局从2020年1月至2020年8月报告的机动车碰撞。每条记录代表一次单独的碰撞,包括事故的日期,时间和位置(市镇,邮政编码,街道名称,纬度/经度),车辆和受害人参与其中,并促成因素。 字段介绍 英文 中文 CRASH DATE 发生日期 CRASH TIME 发生时间 BOROUGH 自治市镇 ZIP CODE 邮政编码 LATITUDE 纬度 LONGITUDE 经度 LOCATION 地点 ON STREET NAME 街道名称 CROSS STREET NAME 十字路口名称 OFF STREET NAME 街边名称 NUMBER OF PERSONS INJURED 受伤人数
2024-12-18 09:39:42 14.04MB 数据集
1
网络与信息安全管理员技能考核复习题目
2024-12-17 20:28:50 20.92MB 网络与信息安全
1
网络与信息安全管理员技能考核题目参考答案
2024-12-17 20:28:20 16.29MB
1
1、文件“600519.csv”可以从网址 “http://quotes.money.163.com/service/chddata.html?code=0600519&start=20010827 &end=20221115&fields=TCLOSE;HIGH;LOW;TOPEN;LCLOSE;CHG;PCHG;TURNOVER;VOT URNOVER;VATURNOVER;TCAP;MCAP”下载 2、根据上面的网址,编写程序自动下载中证白酒指数中 17 支股票的数据(即下载 17 个 csv 文件),每支股票的数据应该是从上市起至 2022 年 11 月 29 日。 3、读取所下载的 17 个 csv 文件中有关股票的数据,将数据保存至一个 sqlite3 的数据 库中(sqlite3 的教程及接口示例可参见https://www.runoob.com/sqlite/sqlitetutorial.html)。 4、使用 DTW(Dynamic Time Warping)算法计算贵州茅台(600519)与其它 16 支股票的距离,并将这 16 个距离打印在屏幕上。
2024-12-17 16:14:44 22KB python 数据分析
1
CommVault是一种专业的数据管理和备份解决方案,它为企业的数据保护提供了全面而强大的策略。这份"最详尽的备份解决方案"内部资料可能涵盖了CommVault系统的核心功能、最佳实践以及针对特定应用场景的优化策略。以下是对这两个文档名称所涉及内容的详细解释: 1. **SIMPANA 8.0 备份备份建议书** - **SIMPANA** 是CommVault的数据管理平台,版本8.0代表了该产品的某个重要更新或增强版。 - **备份备份** 可能是指双重备份或者冗余备份策略,这是为了确保数据的高可用性和灾难恢复能力。它可能包括了不同层次的备份,如全量备份、增量备份和差异备份,以及如何结合使用这些方法来最大化效率和减少存储需求。 - **建议书** 可能包含了如何规划、配置和执行备份作业的详细步骤,以及如何评估和测试备份的完整性和可恢复性。 2. **SIMPANA 8.0 Exchange邮件管理系统建议书** - **Exchange邮件管理系统** 指的是微软的Exchange Server,一种广泛使用的电子邮件和协作服务。SIMPANA 8.0对Exchange的支持可能涉及备份Exchange数据库、邮箱、公共文件夹等关键组件,以保护企业的重要通信数据。 - **建议书** 可能详细阐述了如何配置CommVault以保护Exchange环境,包括最佳的备份时间、备份频率、备份类型选择(例如,使用Exchange VSS Writer进行无中断备份),以及如何恢复单个邮件、邮箱或整个Exchange服务器。 在CommVault的备份解决方案中,通常会涉及到以下几个关键知识点: - **全局编目**:CommVault通过全局编目技术将所有数据进行索引,方便快速定位和恢复。 - **智能数据移动**:根据数据的访问频率和重要性,自动将数据移动到不同层级的存储,实现成本优化。 - **单一管理界面**:提供统一的管理界面,简化数据保护的复杂性。 - **即时恢复**:能够直接从备份副本中恢复数据,无需先进行完全恢复。 - **云集成**:支持公有云和私有云的备份和恢复,实现混合云环境的数据保护。 - **合规性与法规遵从**:帮助满足各种行业标准和法规,如HIPAA、GDPR等,确保数据安全。 - **灾难恢复计划**:制定详尽的DR策略,确保在系统故障或灾难发生时能快速恢复业务。 这份内部资料可能会详细解析以上功能,并结合实际案例,指导用户如何利用CommVault实现高效、可靠的数据备份和恢复。同时,也会讨论如何根据企业的具体需求和规模,定制合适的备份策略。
2024-12-17 10:40:29 6.95MB 数据备份
1
大数据可视化是现代信息技术领域的重要组成部分,它通过图形化的方式将复杂的数据进行呈现,使得数据分析更加直观易懂。在这个“大数据可视化项目模版.zip”压缩包中,初学者可以找到一系列资源来帮助他们入门并实践大数据可视化项目。这些模版可以在Eclipse这样的集成开发环境中使用,表明它们可能是基于Java或者其他支持Eclipse的编程语言开发的。 我们要理解大数据的基本概念。大数据是指那些在规模、速度和多样性方面超出传统处理能力的数据集。它包含了结构化、半结构化和非结构化的数据,例如日志文件、社交媒体数据、图像和视频等。对大数据的分析能够揭示隐藏的模式、趋势和关联,为企业决策提供有力支持。 可视化在大数据中的作用是至关重要的。通过图表、地图、仪表盘等形式,我们可以快速解读大量信息,发现数据背后的故事。常见的大数据可视化工具包括Tableau、Power BI、D3.js等,它们提供了丰富的图表类型和交互功能。 在Eclipse中实现大数据可视化项目,通常会涉及以下技术栈: 1. **编程语言**:Eclipse支持多种语言,如Java、Python、Scala等。Java因其跨平台性和丰富的库(如Apache Spark、Hadoop)而常用于大数据处理。 2. **数据处理框架**:Apache Spark是大数据处理的常用框架,它支持实时和批处理,具有强大的数据处理和机器学习能力。可以与Eclipse结合,通过Spark的API进行编程。 3. **可视化库**:对于Java,JFreeChart和JavaFX可以用于创建图表;Python用户可能选择Matplotlib或Seaborn;如果是Web应用,JavaScript的D3.js库则非常流行。 4. **数据存储**:Hadoop的HDFS提供了分布式文件系统,用于存储大规模数据。数据库如HBase、Cassandra也可用于NoSQL数据的存储。 5. **数据获取**:可能需要使用ETL(提取、转换、加载)工具来从不同来源获取数据,如Kafka用于流数据处理。 6. **前端展示**:对于Web应用,HTML、CSS和JavaScript构建用户界面,与后端通过API交互,将数据可视化结果展示出来。 7. **设计原则**:有效的可视化设计应遵循一些基本原则,如清晰性、一致性、适当的比例和颜色使用,确保信息传达的准确性和效率。 这个压缩包中的项目模版可能包括了以上部分或全部组件,初学者可以通过分析模版代码,了解如何将数据导入、处理、转换,以及如何利用可视化库创建图表。通过实践这些模版,不仅可以提升编程技能,还能深入理解大数据可视化项目的工作流程和最佳实践。 这个“大数据可视化项目模版.zip”是一个宝贵的资源,为初学者提供了动手实践的机会,帮助他们快速掌握大数据可视化的关键技术和工具。通过学习和运用这些模版,学习者可以提升自己的数据分析和可视化能力,为未来的项目开发打下坚实基础。
2024-12-15 19:22:43 24.2MB 可视化
1