故障诊断,时域特征提取,包含有量纲参数和无量纲参数,一共17个特征参数值;频域特征提取,一共3个特征参数值;时频域特征提取,一共18个特征参数值;所有matlab程序代码均有详细注解说明,直接代入原始数据运行即可得到结果。
2024-03-24 20:15:03 2.01MB matlab 故障诊断 特征提取
1
对信号进行频域特征提取,先通过傅里叶变换得到信号频谱,再计算频谱特征,包括重心频率,均方频率和频率方差
1
利用matlab提取出频域和时域信号的29个特征,主运行文件feature_extraction,fre_statistical_compute和time_statistical_compute分别提取频域和时域的特征,生成的29个特征保存在生成的feature矩阵中。
2022-11-07 22:06:28 8.45MB matlab 信号_特征 时域特征 时频矩阵
1
主要是用于信号特征提取中的时频域特征提取
2022-11-04 16:59:02 12KB 时频域特征提取
1
目前支持进行提取的特征包括: 1.max :最大值 2.min :最小值 3. mean :平均值 4.peak :峰峰值 5.arv :整流平均值 6.var :方差 7.std :标准差 8.kurtosis :峭度 9.skewness :偏度 10.rms :均方根 11.waveformF :波形因子 12.peakF :峰值因子 13.impulseF :脉冲因子 14.clearanceF:裕度因子 15.FC:重心频率 16.MSF:均方频率 17.RMSF:均方根频率 18.VF:频率方差 19.RVF:频率标准差 20.SKMean:谱峭度的均值 21.SKStd:谱峭度的标准差 22.SKSkewness:谱峭度的偏度 23.SKKurtosis:谱峭度的峭度 function fea = genFeatureTF(data,fs,featureNamesCell) % 时域、频域相关算法的信号特征提取函数
2022-10-08 16:20:13 14KB 特征提取 时域特征 频域特征 谱峭度
1
视频代码与数据下载地址
2022-06-22 15:48:46 301KB 频域特征
1
MATLAB时频域特征提取已封装为函数,可实现一行代码提取时域频域特征。亲测好用! 可以直接生成原始信号的特征向量。包括以下22个特征: % max :最大值 % min :最小值 % mean :平均值 % peak :峰峰值 % arv :整流平均值 % var :方差 % std :标准差 % kurtosis :峭度 % skewness :偏度 % rms :均方根 % waveformF :波形因子 % peakF :峰值因子 % impulseF :脉冲因子 % clearanceF:裕度因子 % FC:重心频率 % MSF:均方频率 % RMSF:均方根频率 % VF:频率方差 % RVF:频率标准差 % psdE:功率谱熵 % svdpE:奇异谱熵 % eE:能量熵 %
提出了一种基于时频域特征的情绪检测方法。使用Box-and-whisker plot(箱线图)选择最佳特征,然后将其输入SVM分类器,用于训练和测试DEAP数据集,其中考虑了32名不同性别和年龄组的参与者。实验结果表明,该方法对测试数据集的准确率为92.36%。此外,所提出的方法比最先进的方法表现出更高的准确性。 本文利用DEAP数据集预处理的脑电信号对两种维度进行四分类,即效价和觉醒。首先通过应用FFT将数据集中的样本从时域转移到频域,然后提取对情绪识别特别重要的α、β和θ频带。随后,根据每个情绪对应的象限对提取的频带进行平均,并使用平均频带值提取统计特征。然后,对提取的特征进行缩放,并将各种特征组合输入支持向量机分类器(SVM)进行情感识别。据观察,我们的方法使用偏度、峰度和波熵特征预测情绪,准确率为92.36%。与现有的DEAP数据集方法相比,我们提出的模型显示了更好的结果。