注BIOS看模具号是NP5X_6X_7X_SNX就可以刷,不分品牌,其他的别刷,刷了变砖。 我是先刷EC再刷的bios,08版ec是蓝天镜像网下载的最新的,压缩硬盘刷完放进解锁文件直接解锁(放进去后可以删除卷标开机后不显示这个磁盘),解锁文件是个人产考刘凯教程解锁,测了好多才知道蓝天的bios和官方的都不能解锁成功低电压保护,只有xmg的可以,。需要的自提 按照bios文件里面的刷机方法第一步是刷ec第二步是刷bios,不想刷ec的直连刷刷第二步就行。建议先刷ec(你ec太老的话)。注我这个是13900hx个人是ac降压108(108是没关cep保护测的的最高分,低电压保护成功关闭后没有测试更低的值抄作业可以110想极限的自己测),offset降压是-80(ring里面的offset同步-80不然不生效) 功耗墙性能模式pl1与pl2限制120瓦,娱乐模式pl1 60瓦pl2 100瓦,安静模式原来pl1是15pl2是30还是35,我把安静模式pl1改成40瓦pl2 50瓦这样打小游戏和日常用很安静,大核我锁的是4.9g小核3.5g这样平时用安静模式不卡还特别安静(可以锁4.8和3.3),打游戏看游戏来可以因特尔xtu拉功耗看游戏帧数变化(实测大多数游戏45瓦可以搞定,小部分要55瓦到60瓦,少部分80瓦以上,不然就频繁触发频率拉高温度猛涨然后又降频温度就控制不住,我就改了娱乐模式和安静模式) 如果数据动多了不正常按住fn+d开机可以重置bios,内存我是垃圾英睿达的我超不了没动,其他的内存可以自己整一下。 最后重要的一点使用独显直连玩,这个电脑核显供电没有散热有烧供电风险。独显直连避免出问题。
2025-10-04 10:09:02 38.66MB
1
升压电路(也称为升压转换器或Boost转换器)和降压电路(又名降压转换器或Buck转换器)是电源设计中常见的两种基本型的DC-DC转换器。它们被广泛用于电子设备中,以将一个输入电压转换为不同的输出电压。升压电路能够将较低的输入电压提升至一个更高的稳定输出电压,而降压电路则相反,它将较高的输入电压降低至一个较低的稳定输出电压。两者的设计和计算都遵循一系列电路公式和算法,这些公式可以帮助设计师进行精确的设计计算,以满足不同电子系统的需求。 德州仪器(Texas Instruments,简称TI)是全球知名的半导体公司,其数据手册(datasheet)详细列出了旗下产品的技术规格和性能参数,是电子工程师设计电路时的重要参考资料。在升压和降压电路设计中,德州仪器的数据手册提供了关键的参数信息,如效率、开关频率、输入输出电压范围、最大输出电流等,这些参数对于设计合适的电源电路至关重要。 升压电路的自计算表格通常包含了多个参数输入,如输入电压、期望的输出电压、负载电流、电感值、开关频率、二极管和晶体管的额定值等。通过这些参数,设计者可以利用公式来计算关键元件的规格,确保转换器在不同负载条件下都能稳定工作。 降压电路的自计算表格同样需要输入类似的一系列参数。通过输入这些参数,设计者可以使用一系列公式来确定必要的组件规格,包括电感器的大小、电容器的容值、MOSFET的开关能力等。这些参数直接关系到电路的稳定性和效率。 自计算表格中涉及的公式通常会涉及到几个关键的电路参数的计算,例如: 1. 电感器的选择:需要根据负载电流、开关频率、允许的纹波电流以及期望的电感器电流纹波来计算所需的最小电感值。 2. 输出电容的选择:需要根据负载电流、开关频率、输出电压纹波和所需的最小电容值来确定电容规格。 3. 功率MOSFET的选择:根据最大电流、电压降、开关频率、效率以及热设计要求来计算所需的MOSFET功率级。 这些计算在设计过程中是不可或缺的,因为它们确保了转换器能够满足系统的需求,同时保持在安全的工作区域内,避免过热和组件损坏。 实际设计升压或降压电路时,工程师们还需要考虑额外因素,比如电源的瞬态响应,以及如何在不同的工作条件下保证电路的稳定性和性能。此外,系统级的考量如电磁兼容(EMC)、电路板布局、热管理等因素也对电路设计有着重要影响。 升压电路和降压电路的自计算表格及公式是电源设计领域的重要工具,它们能够帮助工程师快速准确地设计出满足各种性能要求的电源转换器。通过德州仪器等知名半导体厂商提供的数据手册和电路公式表达式,设计师们可以进一步确保他们的设计既符合标准要求,又能在实际应用中表现出色。
2025-09-15 19:57:29 775KB 电压计算
1
在电子工程领域,电源转换器的设计是至关重要的,特别是对于那些需要处理各种输入电压并提供稳定输出的应用。本文将深入探讨“3.5V 至 36V 输入、6.5V1.2A 输出同步 4 开关降压-升压转换器”的参考设计,这是针对宽输入电压范围和特定输出需求的高效解决方案。 让我们理解什么是降压-升压(Buck-Boost)转换器。这种类型的转换器能够在其输入电压高于、低于或等于所需输出电压的情况下工作。它通过调节开关元件(通常是MOSFET)的导通和关断时间来实现电压变换,从而确保稳定的输出电压。在这个参考设计中,使用了同步4开关配置,这比传统的两开关配置提供了更高的效率,因为它消除了二极管的反向恢复电流损失。 同步4开关降压-升压转换器的工作原理可以这样解释:四个开关(两个上桥臂,两个下桥臂)与电感器和电容器协同工作,形成一个能量传递网络。在不同阶段,不同的开关组合导通,使得电感器既能储能也能释能,以适应输入电压和输出负载的变化。 该设计的输入电压范围为3.5V至36V,这意味着它可以处理从低压电池到较高电压电源的各种情况。这种宽输入电压范围的适应性使得此转换器适用于多种应用场景,如电动车、太阳能系统或便携式设备的充电器。而其6.5V1.2A的固定输出则适合驱动需要稳定电压的高功率组件,例如微控制器、传感器集群或通信模块。 在实际应用中,这种转换器需要具备良好的动态响应,以便快速调整输出电压以应对负载突变。此外,高效能是关键,因为它直接影响到设备的能源利用率和散热管理。同步4开关设计有助于降低开关损耗,从而提高转换效率,通常可以达到90%以上。 设计过程中需要考虑的其他重要因素包括电磁兼容性(EMC)和电磁干扰(EMI)控制,这可以通过优化布局、选择适当的滤波元件和采用屏蔽技术来实现。同时,热设计也是必不可少的,要确保在最大负载和最高输入电压条件下,转换器的温度仍能在安全范围内。 在提供的压缩包文件中,可能包含详细的设计原理图、PCB布局文件、元器件选择指南、控制算法说明以及性能测试报告等。这些资料可以帮助工程师理解和复制这个设计,或者根据自己的需求进行修改和优化。 “3.5V 至 36V 输入、6.5V1.2A 输出同步 4 开关降压-升压转换器参考设计”是一项综合了高效能、宽输入电压范围和稳定输出的技术方案,对于需要在不同电压环境下运行的系统来说,是一个理想的电源解决方案。通过深入研究这个设计,开发者不仅可以掌握高级电源转换技术,还能为自己的项目提供可靠的电源管理策略。
2025-09-13 06:57:47 2.6MB 升压降压
1
天然气水合物是一种富含甲烷的固态化合物,广泛存在于深海沉积物及陆地永久冻土区的高压低温环境中。由于其储量巨大、分布广泛,被认为是21世纪最具潜力的清洁能源之一。在天然气水合物的开发过程中,降压开采是一种常用的方法,它依赖于降低水合物储层的压力,使其稳定条件被打破,从而释放其中的甲烷气体。 COMSOL是一种先进的多物理场仿真软件,它能够模拟包括热传递、流体流动、结构应力等多方面的物理现象。在天然气水合物的降压开采研究中,可以利用COMSOL软件建立热-流-固多场耦合模型,实时跟踪水合物分解、甲烷释放、储层孔隙度和渗透率变化等过程,从而对开采效率和安全性做出科学评估。 在模拟过程中,储层孔隙度和渗透率的演化是评价开采效果的重要指标。孔隙度代表了岩石中孔隙的体积占岩石总体积的比例,渗透率则反映了流体在储层中流动的能力。在开采初期,储层的孔隙度和渗透率较低,但随着水合物的分解和甲烷气体的释放,孔隙度会逐渐增大,渗透率也会得到提升,从而提高开采效率。 水平井筒环空高压充填石英砂层是一种提高开采效率的技术。在该技术中,通过在水平井筒和储层之间充填石英砂等支撑材料,可以保持储层结构的稳定,防止井筒的坍塌,并提高流体的渗透能力。压裂水平井模型则是在水平井的基础上进行水力压裂,人为地创造出更多的裂缝,以增加储层与井筒间的接触面积,进一步提高天然气的采收率。 在天然气水合物的开采技术分析中,多场耦合是核心概念,涉及热传递、流体动力学和固体应力应变等多个物理场的相互作用。这些耦合效应对于正确描述和预测水合物储层的动态响应至关重要。尤其是在开采过程中,储层的温度、压力和机械强度都会发生显著变化,这些变化通过多场耦合模型能够得到更加准确的反映。 为了确保天然气水合物的高效与安全开采,研究者需要对开采过程中可能出现的环境影响、技术难点等问题进行全面的考量。例如,开采可能引起的海底滑坡、甲烷逃逸对气候变化的影响等,都是需要重点研究的方向。同时,技术上的突破,如改进的热管理方法、新型压裂技术等,也将为未来的商业化开采提供支持。 天然气水合物的降压开采研究是一个复杂而多维的过程,涉及到多场耦合分析、储层孔隙度和渗透率的演化评估以及开采技术的优化。利用COMSOL等仿真工具,结合实际地质数据,可以为这一领域的深入研究和技术开发提供科学的依据和指导。
2025-08-12 12:46:44 120KB
1
在现代电力系统中,变电站作为连接不同电压等级电网的重要枢纽,发挥着至关重要的作用。110KV变电站作为中压电网的关键组成部分,对于电力的高效传输和分配至关重要。某110KV降压变电站设计不仅涉及到变电站本身的技术参数设计,还包括了从地理位置选择、系统架构构建、主要电气设备选型,到供电安全性、可靠性和经济性的全面考虑。 降压变电站的设计必须遵循一定的技术规范和安全标准,确保在电力系统的运行中既能够高效传输电力,又能够保障电力供应的稳定性。在设计过程中,工程师需要精确计算出变压器的容量、变比,以及变压器和相关高压设备的配置,以满足不同负载条件下的电力需求。此外,降压变电站设计还必须考虑到变压器的冷却方式、绝缘水平以及噪音控制等问题,以确保变电站在运行过程中的安全性和可靠性。 在技术方案的制定上,变电站的设计需充分考虑电网的布局与结构,力求实现变电站的经济运行和电网的高效管理。变电站的设计方案中通常会包含一次系统图和二次控制图。一次系统图展示了变电站内高压、中压、低压配电装置的接线方式,包括主变压器、断路器、隔离开关、电流互感器、电压互感器等主要一次设备的布置与连接。二次控制图则是变电站监控与保护系统的详细设计,它涉及到继电保护、自动控制、测量仪表等二次设备的配置和接线。 变电站的设计还需考虑其与周边环境的协调性。设计人员需要根据地形地貌、环境条件、交通状况等因素,合理选择变电站的建设位置,确保变电站的长期稳定运行,并将对周围环境的影响降至最低。例如,在城市规划中,降压变电站的建设应尽可能避免对居民生活造成干扰,同时还要考虑到变电站未来可能的扩展和升级。 除此之外,降压变电站设计还需要关注节能降耗和环境保护。在保证电力供应安全、稳定的基础上,变电站的设计应尽量采用高效节能的设备和技术,减少能源消耗和温室气体排放。同时,变电站的设计还应考虑到噪音控制、废弃物处理等环保措施,以符合当前绿色电力发展的趋势。 在实际操作中,某110KV降压变电站的设计可能会包含以下内容: - 站址的选择和场地布置设计; - 主变压器的选择与配置; - 高压配电装置的接线方案; - 二次控制与保护系统的设计; - 土建工程及辅助设施的设计; - 通讯、监控系统的布置; - 环境保护措施的制定。 某110KV降压变电站的设计是一个复杂的系统工程,它涉及到电力系统运行的多个方面,包括安全性、可靠性、经济性和环保性。设计者需综合考虑各种因素,通过科学合理的规划和精心设计,确保变电站能够高效、稳定地为电网输送电力。
2025-06-30 19:35:35 1.58MB
1
直流升降压斩波电路实验报告:基于Buck-Boost拓扑的闭环控制与Simulink仿真分析,操作便捷,自动计算占空比与输出波形,深入探究升压与降压模式下的轻载重载特性及纹波系数控制,全篇46页,详尽工作量呈现,直流升降压斩波电路实验报告:基于Buck-Boost拓扑的闭环控制与Simulink仿真分析,自动计算占空比输出波形,轻载重载下的性能研究及纹波系数优化,共46页详尽解析,直流升降压斩波电路,buck—boost,闭环控制,实验报告simulink仿真,打开既用,操作方便输入你想要的电压,计算模块自动算出占空比并输出波形,分析了升压轻载重载,降压轻载重载,以及纹波系数,均小于1%,报告46页,工作量绝对够。 哦~报告仅供参考 ,关键词:直流升降压斩波电路; buck-boost; 闭环控制; Simulink仿真; 占空比; 波形; 轻载重载; 纹波系数; 报告。,基于Simulink仿真的直流升降压斩波电路实验报告:Buck-Boost闭环控制操作分析
2025-05-26 12:01:42 5.36MB
1
内容概要:本文详细介绍了在Simulink环境下设计和仿真IGBT降压斩波电路的方法。首先阐述了IGBT降压斩波电路的基本原理,即通过控制IGBT的导通与关断来调节输出电压。接着逐步讲解了如何在Simulink中构建该电路模型,包括选择适当的模块如电源、IGBT、续流二极管、电感、电容和负载电阻,并设置合理的参数。此外,还探讨了PWM信号生成及其对电路性能的影响,以及如何优化仿真参数以获得准确的结果。最后,通过对仿真波形的分析验证了理论计算的正确性和电路的有效性。 适合人群:从事电力电子研究或相关领域的工程师和技术人员,尤其是那些希望深入了解IGBT降压斩波电路工作原理及其实现方式的人群。 使用场景及目标:适用于教学培训、科研实验和个人项目开发等场合。目的是帮助读者掌握利用Simulink进行复杂电力电子电路建模和仿真的技能,提高解决实际问题的能力。 其他说明:文中不仅提供了详细的步骤指导,还包括了许多实践经验分享和技巧提示,有助于初学者快速入门并深入理解这一主题。
2025-05-25 23:18:59 650KB
1
### 电气工程课程设计知识点详解 #### 一、电气工程设计概述 电气工程设计是针对特定场所或设施进行电力系统规划、设计与实施的过程。在本案例中,针对某铸造厂总降压变电所及厂区配电系统的设计,主要包括以下几个方面的内容: 1. **原始资料分析**:首先需要收集并分析工厂的基本信息,包括厂区平面布置图、负荷需求、外部电源条件等。 2. **设计方案制定**:基于原始资料,确定设计方案,包括变电所的主接线形式、设备选型等。 3. **短路电流计算**:用于选择合适的电气设备,并确保系统的安全性。 4. **电气设备选择与校验**:包括导线、断路器、继电器等的选择与校验。 5. **主变压器保护设计**:包括瓦斯保护、过电流保护、电流速断保护、过负荷保护等。 #### 二、原始资料分析与方案制定 1. **厂区平面布置图分析**:通过分析厂区平面布置图,可以了解到各个车间的位置、大小及其相互之间的关系,这对于后续的配电系统设计至关重要。 - **车间负荷分类**:如1~6车间被定义为Ⅰ级负荷,要求不间断供电,这对于选择合适的电气设备和保护措施非常重要。 - **负荷分布**:了解负荷分布有助于确定主变压器的位置和容量,以及输电线路的走向。 2. **负荷要求**:明确了不同车间的负荷特点和供电要求,这对于设计可靠的配电系统至关重要。 - **长期连续负荷**:这类负荷要求供电稳定性极高,任何中断都可能造成重大损失。 - **最大负荷利用小时数**:对于确定变压器容量、导线截面积等关键参数非常有用。 3. **外部电源情况**:外部电源的情况直接影响到变电所的设计,尤其是电源的稳定性和可靠性。 - **主变容量**:2×31.5MVA的变压器为供电提供了基础保障。 - **短路容量**:1918MVA的短路容量反映了系统的稳定性。 - **供电电压等级**:用户可以选择35kV或10kV电压供电,这需要在设计时加以考虑。 #### 三、短路电流计算 短路电流计算是电气工程设计中的一个重要环节,主要用于选择和校验电气设备,如断路器、电缆等。短路电流的大小直接影响到系统的安全性和可靠性。 1. **短路电流的影响因素**: - **系统电源的短路容量**:决定了短路电流的最大值。 - **设备参数**:如变压器的阻抗等,也会影响短路电流的大小。 - **系统配置**:如母线配置等。 2. **计算方法**: - **欧姆法**:适用于简单系统。 - **标幺制法**:更适用于复杂系统。 #### 四、电气设备选择与校验 1. **导线选择**:导线的选择需考虑负荷电流、电压损失等因素。 2. **断路器选择**:断路器的选择要考虑额定电流、短路分断能力等参数。 3. **继电保护选择**:继电保护的选择需要考虑到故障类型、保护范围等。 #### 五、主变压器保护设计 1. **瓦斯保护**:用于检测变压器内部的气体变化,及时发现潜在故障。 2. **过电流保护**:防止因过载或短路引起的过电流对变压器造成损害。 3. **电流速断保护**:在短路发生时快速切断电源,避免事故扩大。 4. **过负荷保护**:监控变压器的负荷状态,防止长时间过负荷运行。 通过以上知识点的详细介绍,我们可以看出电气工程设计是一项复杂而细致的工作,需要综合考虑多种因素来确保电气系统的安全、可靠和经济性。
2025-05-14 12:35:36 231KB
1
内容概要:本文详细介绍了如何利用MATLAB/Simulink进行电力电子仿真的具体方法和技术细节。首先讲解了单相和三相全桥整流电路的构建,强调了触发脉冲相位控制、滤波器选择以及参数调整的重要性。接着探讨了电压型逆变电路的设计,着重于PWM生成策略、死区时间和滤波器的应用。随后讨论了斩波电路(尤其是Buck和Boost电路),涉及占空比调节、PID控制器应用及其稳定性优化。最后介绍了交流调压电路的两种方式——相控式和斩控式的实现方法,并提供了仿真优化技巧,如采用理想开关模型、调整求解器等。 适合人群:具有一定电力电子基础知识和MATLAB/Simulink使用经验的研发人员、学生或工程师。 使用场景及目标:适用于希望深入理解电力电子设备工作原理并通过仿真手段验证设计方案的研究者;旨在帮助使用者掌握从模型建立到参数调优的完整流程,提高仿真的准确性和效率。 其他说明:文中不仅提供了详细的步骤指导,还包括了许多实用的小贴士和注意事项,有助于解决常见的仿真难题。同时,附带了一些具体的代码片段供参考,便于快速上手实践。
2025-05-10 15:26:01 883KB 电力电子 斩波电路
1
内容概要:本文详细介绍了在Simulink环境下设计和仿真IGBT降压斩波电路的方法。首先阐述了IGBT降压斩波电路的基本原理,即通过控制IGBT的导通与关断来调节输出电压。接着逐步讲解了如何在Simulink中构建该电路模型,包括选择适当的模块如电源、IGBT、续流二极管、电感、电容和负载电阻,并设置合理的参数。此外,还探讨了PWM信号生成及其对电路性能的影响,以及如何优化仿真参数以获得准确的结果。最后,通过对仿真波形的分析验证了理论计算的正确性和电路的有效性。 适合人群:从事电力电子研究或相关领域的工程师和技术人员,尤其是那些希望深入了解IGBT降压斩波电路工作原理及其实现方式的人群。 使用场景及目标:适用于教学培训、科研实验和个人项目开发等场合。目的是帮助读者掌握利用Simulink进行复杂电力电子电路建模和仿真的技能,提高解决实际问题的能力。 其他说明:文中不仅提供了详细的步骤指导,还包括了许多实践经验分享和技巧提示,有助于初学者快速入门并深入理解这一主题。
2025-04-30 12:51:31 650KB
1