深度学习基于LSTMs+Wavelet实现对锚索无损检测数据的智能化检测分析.zip本项目将深度学习与数字信号处理算法相结合,通过LSTMs(RNN)与连续小波变换CWT的松耦合提出CwtNet(连续小波长度时记忆网络),实现了对结构健康体系的无损检测分析。基于深度学习与信号处理理论,对小波分析Wavelet与长短期记忆网络LSTMs进行松散型结合,并提出“连续小波变换长短期记忆网络CwtNet”:①实现对复杂非平稳信号(锚索无损检测数据)有效的处理与识别分析,为该类信号的处理分析提供了一种新的解决方案;②实现了对信号的智能检测分析,避免了人为经验的结果分析识别,简化了传统的处理
系统通过CwtNet算法实现对锚索无损检测数据的智能化检测分析,避免了人为经验的特征结果识别,简化了分析流程和参数调整过程。②系统通过Python编程实现,基于Google的TensorFlow人工智能及深度学习开源软件库实现LSTMs的定义与开发;基于Qt(PyQt)图形用户界面GUI框架实现图形界面程序;对于多种图形绘制任务,系统基于Matplotlib、PyQt设计实现2D、3D绘图控件并完成图形绘制。