### 进程的同步与互斥,生产者与消费者同步机制问题 #### 一、基础知识概述 在操作系统中,进程的同步与互斥是两个重要的概念。这些概念主要用于解决多进程或多线程环境下资源访问冲突的问题。理解这些概念对于设计高效稳定的系统至关重要。 - **同步**:指的是多个进程之间按照某种预定义的顺序执行的过程。 - **互斥**:确保在任何时刻只有一个进程可以访问共享资源。这是通过锁或信号量等机制实现的。 #### 二、生产者与消费者问题 生产者与消费者问题是进程间通信的经典案例之一。这个问题涉及到一组生产者进程(负责生成数据)和一组消费者进程(负责处理数据)。所有进程都通过一个公共缓冲区进行交互。为了防止数据竞争和死锁,需要采用适当的同步机制。 #### 三、代码分析 给定的代码片段展示了如何使用C语言来实现一个简单的生产者与消费者模型。接下来,我们将深入分析这段代码的关键部分。 ##### 3.1 数据结构定义 ```c #define buffersize 5 int processnum=0; struct pcb { int flag; int numlabel; char product; char state; struct pcb* processlink; }*exe=NULL,*over=NULL; typedef struct pcb PCB; PCB* readyhead=NULL,* readytail=NULL; PCB* consumerhead=NULL,* consumertail=NULL; PCB* producerhead=NULL,* producertail=NULL; int productnum=0; int full=0,empty=buffersize; char buffer[buffersize]; int bufferpoint=0; ``` 这里定义了一个名为`pcb`的数据结构,用于表示进程控制块(PCB),其中包括了进程的一些基本属性,如标识符(`flag`)、编号(`numlabel`)、当前状态(`state`)以及下一个进程的指针(`processlink`)。还定义了一些全局变量,如缓冲区大小、进程数量、产品数量等。 ##### 3.2 队列操作 ```c void linklist(PCB* p,PCB* listhead){ PCB* cursor=listhead; while(cursor->processlink!=NULL){ cursor=cursor->processlink; } cursor->processlink=p; } ``` `linklist`函数用于将一个新进程添加到就绪队列的末尾。`freelink`函数用于释放链表中的所有节点。`linkqueue`函数则用于初始化或扩展队列。 ##### 3.3 进程管理 ```c bool processproc(){ int i,f,num; char ch; PCB* p=NULL; PCB** p1=NULL; printf("\n请输入希望产生的进程个数:"); scanf("%d",&num); getchar(); for(i=0;iflag=f; processnum++; p->numlabel=processnum; p->state='w'; p->processlink=NULL; if(p->flag==1) { printf("您要产生的进程是生产者,它是第%d个进程。请您输入您要该进程产生的字符:\n",processnum); scanf("%c",&ch); getchar(); p->product=ch; productnum++; printf("您要该进程产生的字符是%c \n",p->product); } else { printf("您要产生的进程是消费者,它是第%d个进程。\n",p->numlabel); } linkqueue(p,&readytail); } return true; } ``` `processproc`函数负责创建进程并将其添加到就绪队列中。用户可以指定要创建的进程总数及每个进程的类型(生产者或消费者),并为生产者进程指定要生产的字符。 ##### 3.4 队列元素检查 ```c bool hasElement(PCB* pro){ // 代码缺失 } ``` `hasElement`函数用于检查队列是否包含元素,但代码片段中并未给出具体实现。 #### 四、关键概念解析 1. **缓冲区**: 在本例中,缓冲区用于存储生产者产生的数据,并供消费者读取。 2. **信号量**: `full`和`empty`变量实际上充当了信号量的角色,用于表示缓冲区中已填充的产品数量和空闲空间数量。 3. **互斥锁**: 缓冲区本身应当受到保护,以避免多个进程同时修改它而导致数据不一致。虽然本例中没有明确实现互斥锁,但在实际应用中通常会使用互斥锁来保证数据一致性。 #### 五、总结 生产者与消费者模型是一种经典的进程间通信方式,在实际系统开发中具有广泛的应用价值。通过上述分析,我们可以看到该模型是如何利用数据结构和简单的同步机制来协调不同进程之间的交互。理解和掌握这一模式有助于开发者设计出更高效、可靠的多进程应用程序。
2024-12-03 20:02:15 109KB 操作系统
1
本资源是用可视化界面做的,效果很好,老师那我的当作优秀,你们可以参考一下!
2021-09-19 18:22:00 801KB 进程的同步与互斥
1
实验一 进程的同步和互斥 实验目的:通过编写程序实现进程的同步和互斥,使学生学会分析分析进程(线程)竞争资源现象,学习通过信号量解决进程互斥的方法。 实验原理:利用信号量机制解决进程(线程)的基本方法。 实验仪器:计算机一台。 实验安排:利用Java语言中的多线程模拟生成者、消费者问题,给出测试数据,记录程序运行结果,完成实验报告。 实验要求: (1)设置存放产品的缓冲区的个数为6个。 (2)信号量机制实现生产者和消费者对缓冲区的互斥访问。 (3)生产者生产产品时,要输出当前缓冲区冲产品的个数和存放产品的位置。 (4)消费者消费产品时,要输出当前缓冲区冲产品的个数和消费产品的位置。 (5)用多线程的并发实现生产者进程和消费者进程的同步。 实验报告要求: (1)实验报告中要包含完成此题目所查阅的一些关键技术材料,例如,进程的同步和互斥基本概念,信号量解决互斥的基本方法等。; (2)报告中有实现的关键技术点源代码,源代码书写要有一定的规范,源代码中有相关的注释; (3)作为扩展,有余力的同学,能在界面上能够定时给出可视化展示生产者和消费者问题,动态演示进程的同步和互斥过程。 (4)实验结果要附上运行结果的截图,并相关文字对实验结果进行说明。 (5)写出实验的体会与疑问。
实验题目: 生产者与消费者(综合性实验) 实验环境: C语言编译器 实验内容: ① 由用户指定要产生的进程及其类别,存入进入就绪队列。    ② 调度程序从就绪队列中提取一个就绪进程运行。如果申请的资源被阻塞则进入相应的等待队列,调度程序调度就绪队列中的下一个进程。进程运行结束时,会检查对应的等待队列,激活队列中的进程进入就绪队列。运行结束的进程进入over链表。重复这一过程直至就绪队列为空。    ③ 程序询问是否要继续?如果要转直①开始执行,否则退出程序。 实验目的: 通过实验模拟生产者与消费者之间的关系,了解并掌握他们之间的关系及其原理。由此增加对进程同步的问题的了解。 实验要求: 每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程类型标号、进程系统号、进程状态、进程产品(字符)、进程链指针等等。 系统开辟了一个缓冲区,大小由buffersize指定。 程序中有三个链队列,一个链表。一个就绪队列(ready),两个等待队列:生产者等待队列(producer);消费者队列(consumer)。一个链表(over),用于收集已经运行结束的进程 本程序通过函数模拟信号量的操作。 参考书目: 1)徐甲同等编,计算机操作系统教程,西安电子科技大学出版社 2)Andrew S. Tanenbaum著,陈向群,马红兵译. 现代操作系统(第2版). 机械工业出版社 3)Abranham Silberschatz, Peter Baer Galvin, Greg Gagne著. 郑扣根译. 操作系统概念(第2版). 高等教育出版社 4)张尧学编著. 计算机操作系统教程(第2版)习题解答与实验指导. 清华大学出版社 实验报告要求: (1) 每位同学交一份电子版本的实验报告,上传到202.204.125.21服务器中。 (2) 文件名格式为班级、学号加上个人姓名,例如: 电子04-1-040824101**.doc   表示电子04-1班学号为040824101号的**同学的实验报告。 (3) 实验报告内容的开始处要列出实验的目的,实验环境、实验内容等的说明,报告中要附上程序代码,并对实验过程进行说明。 基本数据结构: PCB* readyhead=NULL, * readytail=NULL; // 就绪队列 PCB* consumerhead=NULL, * consumertail=NULL; // 消费者队列 PCB* producerhead=NULL, * producertail=NULL; // 生产者队列 over=(PCB*)malloc(sizeof(PCB)); // over链表 int productnum=0; //产品数量 int full=0, empty=buffersize; // semaphore char buffer[buffersize]; // 缓冲区 int bufferpoint=0; // 缓冲区指针 struct pcb { /* 定义进程控制块PCB */ int flag; // flag=1 denote producer; flag=2 denote consumer; int numlabel; char product; char state; struct pcb * processlink; …… }; processproc( )--- 给PCB分配内存。产生相应的的进程:输入1为生产者进程;输入2为消费者进程,并把这些进程放入就绪队列中。 waitempty( )--- 如果缓冲区满,该进程进入生产者等待队列;linkqueue(exe,&producertail); // 把就绪队列里的进程放入生产者队列的尾部 void signalempty() bool waitfull() void signalfull() void producerrun() void comsuerrun() void main() { processproc(); element=hasElement(readyhead); while(element){ exe=getq(readyhead,&readytail); printf("进程%d申请运行,它是一个",exe->numlabel); exe->flag==1? printf("生产者\n"):printf("消费者\n"); if(exe->flag==1) producerrun();
2021-06-22 16:05:23 312KB 生产者与消费者
1
在Windows等操作系统下,使用的VC、VB、java或C等编程语言,采用进程(线程)同步和互斥的技术编写程序实现生产者-消费者问题或哲学家进餐问题或读者-写者问题或自己设计一个简单进程(线程)同步和互斥的实际问题。
2021-05-29 22:37:05 1.88MB c++ 读者-写者 内含流程图
1
以生产者消费者模型为基础,在Windows环境下创建一个控制台进程,在该进程中创建读者写者线程模拟生产者和消费者。写者线程写入数据,然后将数据放置在一个空缓冲区中供读者线程读取。读者线程从缓冲区中获得数据,然后释放缓冲区。当写者线程写入数据时,如果没有空缓冲区可用,那么写者线程必须等待读者线程释放出一个空缓冲区。当读者线程读取数据时,如果没有满的缓冲区,那么读入线程将被阻塞,直到新的数据被写进去。
2021-03-21 21:00:14 182KB 进程 同步 互斥 读者写者
1
进程的同步与互斥习题(含部分题目的参考答案).doc
进程的同步与互斥习题(含参考答案).doc
一个简单的有关于生产者和消费者问题的实例程序
2020-01-03 11:19:53 3KB 进程 同步 互斥
1
以生产者消费者模型为基础,在Windows环境下创建一个控制台进程,在该进程中创建读者写者线程模拟生产者和消费者。写者线程写入数据,然后将数据放置在一个空缓冲区中供读者线程读取。读者线程从缓冲区中获得数据,然后释放缓冲区。当写者线程写入数据时,如果没有空缓冲区可用,那么写者线程必须等待读者线程释放出一个空缓冲区。当读者线程读取数据时,如果没有满的缓冲区,那么读入线程将被阻塞,直到新的数据被写进去。
2019-12-21 20:06:16 182KB 进程 同步 互斥 读者写者
1