内容概要:本文详细介绍了如何使用Aspen Plus软件结合ASF(Anderson-Schulz-Flory)分布关系、Rstoic反应器和Fortran子程序来模拟费托合成过程。费托合成分两步进行:一是CO加氢反应,二是碳链的增长。文中首先解释了Rstoic反应器的设置方法,包括定义反应物和产物及其化学计量系数。接着阐述了ASF分布函数的作用及其在Fortran子程序中的实现,通过调用Fortran子程序来精确模拟产物分布。此外,文章还提供了具体的Fortran代码示例,展示了如何将链增长概率α设为温度的函数,从而更好地模拟实际工况。最后,作者分享了一些实用的操作技巧和常见错误避免方法。 适合人群:从事化工过程模拟的研究人员和技术人员,尤其是那些希望深入了解费托合成模拟的人群。 使用场景及目标:适用于需要对费托合成过程进行精确模拟的研究项目或工业应用。主要目标是提高模拟精度,优化生产工艺,减少实验成本。 其他说明:文章不仅提供了详细的理论背景介绍,还包括了许多实际操作中的注意事项和经验分享,有助于读者更快地上手并掌握相关技能。
2025-12-16 16:49:01 550KB
1
Aspen Plus模拟:氢气液化循环中液氮预冷与氦气涡轮膨胀的综合应用,Aspen Plus模拟的氢气液化工艺流程:综合液氮预冷与氦气涡轮膨胀制冷技术在化工过程模拟中的实践与应用,Aspen Plus模拟氢液化循环 本模型可 Aspen 化工过程模拟→本模型将模拟基于液氮预冷和氦气涡轮膨胀制冷的氢气液化过程。 将使用 Aspen Plus 对基于液氮预冷和氦气涡轮膨胀制冷的氢气液化过程进行模拟。 该工艺由三个主要部分组成: - 氢气液化系统 - 液氮预冷系统 - 氦气低温循环 储罐中的氢气首先经过氮气预冷。 然后进入第一个正副转化反应器,用氮气冷却。 静止的气态氢气在氦冷热交器中冷却,然后进入第二个正副转反应器,该反应器绝热运行。 依此类推,氢气被氦气间接冷却,正离子馏分被耗尽。 当达到所需的对位馏分时,氢气在阀门中膨胀,形成液态。 ,Aspen Plus模拟; 氢液化循环; 液氮预冷; 氦气涡轮膨胀; 化工过程模拟; 氢气液化系统; 液氮预冷系统; 氦气低温循环; 储罐; 正副转换反应器。,Aspen Plus模拟氢气液化工艺:液氮预冷与氦气循环相结合
2025-11-03 13:17:03 1.37MB ajax
1
内容概要:本文详细介绍了如何利用Aspen Plus软件中的产率反应器(RYield)来模拟生物质热解过程。首先,通过定义生物质成分及其热值,建立非传统组分Corn_Stover。然后,构建包括粉碎预处理、热解反应器和产物分离在内的完整工艺流程。文中特别强调了产率反应器的参数设置,如产物分布比例、燃气组分的具体构成以及物性方法的选择。此外,还提到了一些常见的错误提示及解决办法,并展示了不同温度下生物油产率的变化情况。 适合人群:从事化工领域的研究人员和技术人员,尤其是对生物质能源转化感兴趣的学者。 使用场景及目标:适用于希望深入了解并掌握Aspen Plus进行生物质热解模拟的研究人员,旨在帮助他们更好地理解和优化生物质转化为生物油、生物炭和燃气的过程。 其他说明:文中提供了详细的步骤指导和注意事项,有助于初学者快速上手。同时,对于高级用户而言,也可以作为参考手册用于解决实际工作中遇到的问题。
2025-09-09 11:27:52 191KB
1
利用ANSYS CFX软件对甲烷化固定床反应器进行了数值模拟,通过CEL语言编写源项的形式将甲烷化反应速率方程添加到模拟过程中,从而获得了反应器内部流场、温度场及组分浓度的分布.经与现场检测的出口温度和组分浓度的对比,证明了模拟结果的准确性.通过改变进气口方式和增加扰流装置获得了均匀的场分布,进而研究了产率与结构之间的关系.
2025-09-07 18:54:58 282KB 甲烷化固定床反应器 结构优化
1
Aspen Plus在低温空气分离技术中的建模与应用,Aspen Plus在低温空气分离技术中的实践应用与优化模拟,Aspen plus模拟低温空气分离 Aspen 化工过程模拟→低温空气分离是空气分离技术之一,在本模型中,将使用 Aspen Plus 模拟低温空气分离过程。 ,Aspen Plus; 模拟; 低温空气分离; 化工过程模拟。,Aspen Plus模拟低温空气分离技术 在化学工程领域中,空气分离技术是实现气体分离的重要手段,特别是低温空气分离技术,它是利用空气在低温环境下液化,通过精馏等过程将不同气体组分进行分离的技术。Aspen Plus作为一种先进的化工过程模拟软件,被广泛应用于低温空气分离技术的建模与优化。 Aspen Plus软件能够模拟实际工业中的复杂流程,对包括压缩、冷却、精馏等在内的空气分离过程进行详细建模。通过模拟,工程师可以预测不同操作条件下的工艺表现,评估系统性能,从而指导实际的工业设计和操作。这对于提高分离效率、降低能耗、节约成本具有重要意义。 Aspen Plus软件具备强大的热力学和物理性质数据库,这为模拟低温空气分离过程提供了必要的数据支持。它能够帮助工程师分析在不同压力和温度条件下的气体相变和混合物的行为,以获得最佳的操作条件。 低温空气分离技术主要应用于制氧、制氮等工业领域。例如,大型钢铁厂或化工厂需要大量氧气,通过低温空气分离技术能够提供所需的纯度氧气。在化工过程中,根据不同的化学反应需求,对不同的气体进行分离和纯化是必不可少的环节。 在模拟过程中,Aspen Plus不仅能够模拟出整个低温空气分离流程,还能针对具体的设备进行模拟。例如,对于制氧设备中的换热器、精馏塔等关键部件,Aspen Plus能够提供详细的设计参数,帮助工程师优化设备结构和操作条件,提高整个系统的运行效率。 此外,Aspen Plus还支持对工艺流程的优化模拟,包括能源消耗分析、环境影响评价等。通过模拟,工程师能够评估不同设计方案对环境的影响,寻求降低温室气体排放的方法,实现绿色化工的目标。 Aspen Plus在低温空气分离技术中的应用,不仅局限于建模和模拟,还包括工艺流程的优化、设备设计的指导和环境影响的评估。通过使用Aspen Plus软件,化工行业能够实现更加高效、节能和环保的空气分离过程。
2025-08-18 12:36:07 682KB
1
内容概要:本文详细介绍了如何使用Aspen Plus软件对碱性电解制氢系统进行建模和优化。首先,将电解槽分为反应堆和外围设备两部分,分别进行建模。对于电解堆,采用Rstoic反应器模拟水电解反应,并考虑电解液浓度、电压效率等因素的影响。在外围设备方面,讨论了气液分离器、换热器等设备的设计要点,确保系统的稳定运行。此外,还强调了模型验证的重要性,提出了通过敏感性分析找到最佳操作参数的方法。最后,分享了一些实用技巧,如使用动态模拟和PID控制提升模型精度。 适合人群:从事化工工艺设计、仿真建模的技术人员,尤其是关注绿色氢能项目的工程师。 使用场景及目标:适用于需要对碱性电解制氢系统进行精确模拟和优化的场合,帮助工程师更好地理解和预测实际生产过程中可能出现的问题,从而提高生产效率并降低成本。 其他说明:文中提到的具体操作步骤和技术细节,如物性方法的选择、反应器参数设置等,均基于作者丰富的实践经验,能够为初学者提供宝贵的指导。同时,附带的配套视频和参考资料进一步增强了学习效果。
2025-06-05 15:02:33 233KB
1
自述文件 SUPREM 是一种先进的硅和砷化镓二维Craft.io模拟器,最初由斯坦福大学开发。 原始源代码旨在构建在经典的 UNIX 操作系统上,不能构建在 GNU/Linux 上。 此存储库包含修补的源文件,以允许在最新的 GNU/Linux 操作系统上进行编译,而无需 X11 支持。 实际上它建立在: Fedora 20 x86-64 Fedora 20 x86 它继续运行: Fedora 20 x86-64 Fedora 20 x86 Ubuntu 13.10 x86-64 如果您发现其他受支持的操作系统,请填写问题说明。 指示 软呢帽 sudo yum install gcc compat-gcc-34-g77 make depend install ./suprem4gs 原始自述文件 (C) 版权所有 (1994) 利兰斯坦福初级大学董事会。 除商业转售
2025-05-08 21:22:11 1006KB
1
该程序将 CEV(波动率过程的恒定弹性)离散化,并使用该过程使用 Monte 卡罗方法。
2023-03-31 01:24:29 1KB matlab
1
计算机网络课程设计——路由器查表过程模拟; ①讲解PPT; ②课设报告,附录带有代码;
1
考虑液相的动力粘度、表面张力和溶剂的蒸气压对空化泡运动特性的影响,建立了超声作用于均相液体中空化泡运动的动力学模型,并用MATLAB工具对建立的普遍化的模型方程进行了数值求解和过程模拟。探讨了超声在水介质中传播时超声的频率、功率和空化泡的初始平衡半径对空化泡运动规律的影响以及声压幅值和液相主体温度对空化泡崩溃时的泡内温度和压力的影响,为超声的空化效应在化工过程中的研究和应用提供了基础理论依据。
2023-01-03 00:48:27 875KB 自然科学 论文
1