《Hamilton力学的辛算法》是一份关于物理学与数学交叉领域的专业资料,主要探讨了如何运用辛算法处理Hamilton力学系统的数值计算问题。Hamilton力学是现代物理学的基石,它以数学的形式统一了各种物理定律。辛算法则是在这个框架下,确保在数值计算过程中保持系统的守恒性质,特别是能量守恒。 冯·康(Feng Kang)是这一领域的杰出代表,他在有限元方法和Hamilton系统辛几何算法方面做出了重大贡献。1965年,冯·康提出了基于变分原理的差分格式,这是有限元方法的先驱工作,虽然他在1982年仅获得了国家自然科学二等奖,但这并未减弱其工作的重要性。国际数学界普遍认为冯·康独立创造了有限元方法。1984年后,他又开创了Hamilton系统的辛几何算法,这一贡献在1991年被评定为国家自然科学二等奖,最终在1997年,他因这项工作被追授国家自然科学一等奖。 冯·康的工作表明,对于同一个物理定律的不同数学表达,虽然在物理意义上等价,但在计算上却可能有不同的效率和精度。他强调保持辛几何对称性可以避免数值计算中的耗散效应,提高计算的保真度。这一点在天体力学的轨道计算、粒子加速器的轨迹计算以及分子动力学计算等领域有着广泛应用。 辛几何是建立在外微分形式基础上的,这种数学工具可以处理高维空间中的积分问题。在辛几何中,"1-形式"、"2-形式"等概念被用来描述诸如功、流量这样的物理量,而辛结构就是由非简并的闭2-形式构成的。这些理论为理解和处理复杂的物理系统提供了强有力的数学工具。 《Hamilton力学的辛算法》PPT教案深入讲解了如何利用辛算法来精确模拟和预测Hamilton力学系统的行为,这对于理论物理学家、数学家和工程师来说是非常重要的资源,因为它不仅涉及基本的物理原理,还涵盖了高级的数学技巧,为数值计算和物理模拟提供了严谨的方法。
2024-08-28 09:01:25 1.19MB 专业资料
1
对于一些展开结构,为达到其设计性能,必须采用特殊的索、膜结构,这些索、膜部件表现出不同的拉压性质。具有拉、压不同性质的材料或结构的力学分析,体现出较强的非线性特征,需要针对这类问题发展有效的求解算法。建立了由拉压刚度不同杆单元组成的桁架结构的动力学参变量变分原理,将拉压刚度不同桁架问题的非线性动力分析转换为线性互补问题求解。结合时间有限元方法构造了求解此问题的保辛数值积分方法,此方法不需要迭代和刚度矩阵更新,避免了迭代求解方法的收敛问题,计算过程稳定、高效。
2023-01-12 20:29:51 381KB 工程技术 论文
1
Hamilton力学的辛算法.ppt
2022-05-25 14:08:44 1.47MB 算法
中科院数学所 唐贻发教授的哈密顿系统辛几何算法讲义 HamiltonX dZ dt = J−1∇H(Z), Z ∈R2n, J = O In −In O, (♠) "A{Gτ : Z →e Z "∂e Z ∂Z#T J"∂e Z ∂Z#= J, (♥) Euler¥:“(x, 1984) e Z = Z + τJ−1∇H e Z + Z 2 ! (♣) ·_"{" ♦ ºÆ [1] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1978. [2] x§ 5x'86(II), I§fi§1995. [3] x!§ 5MX"A{6§œ˘E §2004. ='§Springer, 2013. [4] E. Hairer, Ch. Lubich, G. Wanner, Geometric Numerical Integration, Springer, 2002.
2022-03-12 13:41:13 2.87MB 哈密顿系统 辛算法 几何数值积分 数学
1
文献[1]给出了哈密顿系统的一个新的变分原理,并基于此变分原理,通过选择一个时间步长两端不同广义位移或广义动量为独立变量,给出了四种不同类型的求解哈密顿动力系统的数值方法。本文将分别证明这四类数值方法都是保辛的数值方法。
2021-08-11 14:44:32 1.04MB 自然科学 论文
1