计算机视觉与模式识别领域近年来取得了长足的发展,特别是在手势识别方面,它作为人机交互的重要方式之一,已经被广泛应用于智能控制系统、虚拟现实以及自动化设备中。本项目是基于Python3.7编程语言,结合OpenCV库,针对手势轮廓特征提取及机器学习分类技术的深入研究,并且完整地展示了从手势图像采集、预处理、特征提取,到模型训练以及最终的分类识别整个流程的开发步骤。 项目实施过程中,开发者需要对Python编程语言有较深入的理解,同时对OpenCV库的操作应熟练掌握。OpenCV库作为计算机视觉领域最流行的开源库之一,它提供了大量的计算机视觉和机器学习算法,使得开发者可以快速地进行图像处理和分析。 手势轮廓特征提取是手势识别中的关键技术。在这个项目中,开发者需要运用图像处理技术,如边缘检测、轮廓提取等,来准确地从背景中分离出手势图像,并获取手势的轮廓信息。这些轮廓信息将作为后续机器学习算法的输入特征,用于训练分类模型。 机器学习分类是通过训练算法对特征数据进行学习,从而实现分类任务的过程。在这个项目中,可能会使用到的机器学习模型包括支持向量机(SVM)、随机森林、神经网络等。这些模型需要基于提取到的特征数据进行训练,以达到准确分类手势的目的。 此外,项目中还包含了手势库的构建以及傅里叶描述子的使用。手势库的构建是为了存储大量的手势图像样本,它们将被用于训练和测试机器学习模型。傅里叶描述子则是一种用于形状描述的方法,它可以将轮廓信息转换为频域信息,这有助于更好地提取和表示形状的特征。 整个项目的开发是在Windows 10环境下进行的,这为开发者提供了稳定的操作系统平台。而在项目中提到的“gesture-recognition-master”文件夹,可能是包含了项目源代码、数据集、预训练模型以及其他重要文件的核心目录,是整个项目实现的关键部分。 此外,项目的文档资源包括“附赠资源.docx”和“说明文件.txt”,这些文档资料将为项目的开发提供指导和帮助。开发者可以通过阅读这些文档来了解项目的详细说明、安装配置指南以及使用方法等重要信息。 这个项目是计算机视觉与模式识别领域中的一个实际应用案例,它不仅涵盖了手势识别技术的关键环节,还结合了机器学习和深度学习方法,具有很高的实用价值和研究意义。通过对项目的深入分析和学习,开发者可以掌握手势识别的核心技术,为未来在相关领域的发展打下坚实的基础。
2025-06-28 12:02:03 8.85MB
1
此代码主分支是github上的,工程里面已经注释了修改部分,压缩包里面有一个2014_ReleaseGestureSet文件夹,里面包含984张各种手势的彩色图像,利用SVM训练样本,大家可以在此基础上继续增加样本,识别效果更加
2025-06-19 16:38:36 57.61MB 普通摄像头 凸包轮廓
1
传统的调制度测量轮廓术在进行系统的标定时,需要将标准平面多次精密移动,以建立调制度与实际物理高度的映射关系,同时还要对摄像机进行单独的标定。提出一种新的用于调制度测量轮廓术系统的高度映射与相机同时标定的方法。该方法用一个含有多个台阶的标定模块代替传统的调制度测量轮廓术标定方法中使用的标准平面及复杂的平移定位系统,多个高度相同但空间离散分布的台阶构成多个虚拟校准平面,虚拟平面上的调制度分布是通过一个拟合过程实现的,同时多个台阶的中心点还可以作为立体靶标用于相机标定。这种标定方法的特点是:只需要一次扫描测量过程就可以完成系统的标定,包括建立调制度与高度的映射关系和对相机的标定。阐述了该标定方法的原理,并给出实验结果说明了该标定方法的有效性。
2025-06-16 13:53:17 13.38MB 三维面形 调制度测 垂直测量 高度映射
1
在机器视觉领域,Halcon是一种广泛应用的图像处理软件,它提供了强大的形状匹配、模板匹配、1D/2D码识别、光学字符识别(OCR)以及各种几何形状的检测功能。当我们提到“halcon提取产品的轮廓”时,我们实际上是在讨论如何使用Halcon的图像分析工具来识别并获取物体边缘的信息,这在质量控制、自动化生产和机器人定位等场景中至关重要。 我们需要理解什么是轮廓。在图像处理中,轮廓是物体边界在图像中的表现,它包含了物体的形状特征。提取产品的轮廓可以帮助我们判断产品的几何形状是否符合预期,是否存在缺陷,或者用于定位产品进行精确的抓取或装配。 Halcon提供了多种方法来提取轮廓,其中最常用的是“轮廓检测”(Contour Detection)和“边缘检测”(Edge Detection)。轮廓检测是通过查找连续像素强度变化来识别物体边缘,而边缘检测则更注重单个像素的强度变化。这两种方法都可以实现轮廓提取,但具体选择哪种取决于应用场景和图像质量。 1. **轮廓检测**:在Halcon中,可以使用"find_contours"算子来执行轮廓检测。这个算子会找到图像中的所有封闭区域,并返回它们的边界点。为了提高检测精度,我们可以先应用预处理操作,如灰度转换、平滑滤波等,以减少噪声和增强边缘。 2. **边缘检测**:Halcon提供了如"Canny"、"Roberts"、"Prewitt"等多种边缘检测算子。边缘检测通常适用于快速找出物体的边界,但可能无法提供完整闭合的轮廓。边缘检测后,可以通过“连接”算子将断裂的边缘连接成完整的轮廓。 在实际应用中,可能会遇到诸如光照不均、产品反光、背景复杂等问题,这时需要调整Halcon的各种参数,如阈值、滤波器类型、连接策略等,以适应不同的环境和产品特性。同时,为了提高处理速度和准确性,还可以利用Halcon的模型库功能,预先训练一个模型来识别特定产品的轮廓。 完成轮廓提取后,我们可以进一步分析轮廓属性,例如长度、面积、周长、凹凸性等,这些信息对于判断产品质量、识别缺陷或进行后续的测量与定位操作都非常有用。Halcon提供了丰富的形状描述符,如“形状匹配”(Shape Matching)和“轮廓匹配”(Contour Matching),可用于验证产品是否符合预设的模板或模型。 Halcon的轮廓提取功能是机器视觉系统中的重要组成部分,它能够帮助我们准确地理解和分析产品特征,从而提升自动化产线的效率和精度。通过对图像的处理和分析,我们可以实现对产品的无损检测,确保生产过程的高质量和一致性。
2025-06-14 23:46:42 14.92MB halcon
1
1.Python起源与定义 Python 是由荷兰人吉多·罗萨姆于 1989 年发布的。Python 的第一个公开发行版发行于 1991 年。Python 的官方定义:Python 是一种解释型的、面向对象的、带有动态语义的高级程序设计语言。通俗来讲,Python 是一种少有的、既简单又功能强大的编程语言,它注重的是如何解决问题而不是编程语言的语法和结构。 2.Python的应用范围 Python 在通用应用程序、自动化插件、网站、网络爬虫、数值分析、科学计算、云计算、大数据和网络编程等领域有着极为广泛的应用,像 OpenStack 这样的云平台就是由 Python 实现的,许多平台即服务(PaaS)产品都支持 Python 作为开发语言。近年来,随着 AlphaGo 几番战胜人类顶级棋手,深度学习为人工智能指明了方向。Python 语言简单针对深度学习的算法,以及独特的深度学习框架,将在人工智能领域编程语言中占重要地位。 Python 是一种代表简单主义思想的语言。吉多·罗萨姆对 Python 的定位是“优雅,明确,简单”。Python 拒绝了“花俏”的语法,而选择明确。 可下载源码
1
Unity Highlight Plus是一款强大的游戏开发工具,专用于提升3D模型在场景中的视觉效果。它提供了模型轮廓高亮、发光以及覆盖等特效,显著增强了场景中物体的辨识度和艺术表现力。这款插件不仅适用于标准渲染管线,还支持Unity的Universal Render Pipeline (URP),这意味着无论是在桌面平台还是移动平台上,都能实现高质量的视觉效果。 一、Unity模型高亮与描边 1. **轮廓高亮**:Highlight Plus的核心功能之一是模型的轮廓高亮。它可以为场景中的每个对象添加清晰可见的轮廓线,使得游戏元素在复杂的背景中更加突出。轮廓线的宽度、颜色和透明度都可以自定义,以适应不同的艺术风格和视觉需求。 2. **发光效果**:该插件还支持模型的发光效果,为物体表面增加一层柔和或强烈的光晕,增强其视觉吸引力。发光强度和颜色同样可调,可以根据环境光线或者特定的游戏情境进行调整。 3. **覆盖特效**:覆盖特效允许开发者在模型上添加各种图案或纹理,如阴影、渐变色等,进一步丰富物体的表现力,使其更具层次感。 二、Universal Render Pipeline (URP) 支持 Unity的Universal Render Pipeline是一种优化的渲染系统,旨在提高性能并降低对硬件的要求,特别是在移动设备上。Highlight Plus支持URP,意味着开发者可以在享受高效渲染的同时,充分利用这些特效来提升游戏画面的质量。 三、多平台兼容性 Highlight Plus的设计考虑到了跨平台兼容性,无论是Windows、Mac、Linux的桌面平台,还是iOS、Android的移动设备,都能流畅运行。这为开发者提供了更大的灵活性,使得游戏能在各种设备上保持一致的视觉体验。 四、应用实例 - 在冒险游戏中,可以使用轮廓高亮来突出敌人或重要道具,帮助玩家快速识别。 - 在解谜游戏中,通过发光效果来标记关键元素,引导玩家解决问题。 - 在竞技游戏中,可以利用覆盖特效创建独特的角色标识,增强玩家的个性化体验。 五、使用与集成 Highlight Plus的`.unitypackage`文件包含了所有必要的资源和脚本,只需导入到Unity项目中即可开始使用。开发者可以通过Unity编辑器的Inspector面板进行详细设置,包括选择开启哪些特效、调整参数等。 Unity Highlight Plus是提升3D场景视觉表现力的得力助手,通过其丰富的特效和良好的平台兼容性,可以帮助开发者轻松打造出引人入胜的游戏世界。
2025-04-15 13:51:53 12.39MB unity HighlightPlus
1
采用针对静态背景下的基于Surendra背景更新算法的背景减除法对运动人体进行检测.为视频场景建立自适应的背景模型,通过原始图像和背景模型差分获得前景图像,再对检测出来的图像进行了二值化、数学形态学分析、连通分析、尺度归一等一系列图像预处理工作,为跟踪与识别奠定了基础.重点讨论了二值化自适应阈值选择的多种方法,总结出Kapur熵阈值选取法的优越性. ### 用于步态识别的行人轮廓提取 #### 摘要与引言 本文提出了一种基于Surendra背景更新算法的背景减除法来检测静态背景下的运动人体。为了实现这一目标,首先为视频场景建立了一个自适应背景模型。然后,通过原始图像与背景模型之间的差异提取前景图像。接下来,对提取出的图像进行一系列预处理操作,包括二值化、数学形态学分析、连通分析以及尺度归一化等,这些操作为后续的跟踪与识别提供了基础。特别地,本文重点讨论了二值化过程中自适应阈值选择的多种方法,并总结出了Kapur熵阈值选取法的优势。 #### 运动人体检测 在步态识别领域,准确地检测和提取行人的轮廓是非常关键的一步。目前,常见的运动人体检测方法主要有三种:背景减除法、帧间差分法和光流法。本研究中采用的是背景减除法。 ##### 背景减除法 背景减除法是一种常用的方法,它通过对比当前帧与背景模型之间的差异来提取前景物体。背景模型可以通过多种方式建立,其中一种方法是利用Surendra提出的背景更新算法。这种方法可以动态调整背景模型以适应环境的变化,从而提高检测的准确性。 #### 图像预处理 在获取到前景图像之后,需要对其进行一系列预处理操作以去除噪声并提取有用信息。这些预处理步骤包括: 1. **二值化**:将图像转换为只有黑白两种颜色的二值图像。选择合适的阈值是关键,因为不同的阈值会影响到前景的提取效果。本文讨论了多种自适应阈值选择方法,并强调了Kapur熵阈值选取法的优点。该方法通过最大化图像的信息熵来确定最佳阈值,从而在保持图像细节的同时减少噪声的影响。 2. **数学形态学分析**:通过对图像进行膨胀和腐蚀等操作来去除小的噪声点或填充物体内部的小孔洞,进而优化图像的质量。 3. **连通分析**:识别和分离图像中的连通区域,这对于区分不同的人体轮廓至关重要。 4. **尺度归一化**:由于不同人或者不同拍摄角度可能会导致图像尺寸的变化,因此需要对图像进行尺度归一化,以确保所有图像具有相同大小,方便后续处理。 #### 二值化阈值选择 在二值化过程中,阈值的选择对于提取高质量的行人轮廓至关重要。本文探讨了多种阈值选择方法,并指出Kapur熵阈值选取法的优势。这种方法的基本思想是通过最大化图像的信息熵来确定最佳阈值。信息熵表示图像中灰度级分布的不确定性。当图像被分割成前景和背景两部分时,每一部分的信息熵应该尽可能大,这意味着分割后的两部分应该具有最大的区别性。Kapur熵阈值选取法通过计算每个可能的阈值对应的总熵,并选择使总熵最大的阈值作为最佳阈值。这种方法能够自动适应图像的亮度变化,从而提高轮廓提取的准确性。 #### 结论 本文介绍了一种用于步态识别的行人轮廓提取方法,该方法通过背景减除法检测运动人体,并对提取的图像进行了一系列预处理操作,包括二值化、数学形态学分析、连通分析以及尺度归一化等。特别是,在二值化过程中,采用了Kapur熵阈值选取法来自动确定最佳阈值,这种方法能够有效提高轮廓提取的准确性。通过这些技术和方法的应用,可以为步态识别提供更加可靠的基础数据。
2025-04-11 11:10:07 629KB 工程技术 论文
1
包含北京、上海、成都、广州、深圳等二十多个全国主要城市建筑轮廓数据,格式为shp
2024-11-08 15:03:58 326.03MB 建筑轮廓 可视化 cesium
1
用opencv231+vs2008编写的一个拟合椭圆的程序,输入 是二值图,背景是黑色的,还有一个输入是轮廓的面积,能够剔除不需要要轮廓。代码中能测试选定的待拟合的轮廓(已注释),并把轮廓参数输出并测试。
2024-11-01 13:42:46 2KB opencv 椭圆拟合 轮廓提取
1
在ArcGIS中直接将数据拖入,即可城市建筑轮廓,坐标是WGS1984,比如成都放大后是这样的,在ArcGIS中可以看到字段,包括层高,有了层高后我们就可以将其换算为城市建筑高度。有了建筑轮廓数据,我们能做什么呢?主要有: 城市建筑天际线分析 建筑空间构建,提取周边建筑轮廓,生成周边建筑环境要素。 建筑密度分析,可以快速分析出研究区域的建筑密度情况。 建筑高度分析,分析区域内的建筑高度整体情况。 除了上述量化分析,我们还可以应用数据画出很多漂亮的图
2024-09-14 16:36:33 457.76MB 文档资料
1