针对具有大量卷积神经网络的图像超分辨率算法存在的参数大,计算量大,图像纹理模糊等问题,提出了一种新的算法模型。 改进了经典的卷积神经网络,调整了卷积核大小,并减少了参数; 添加池层以减小尺寸。 降低了计算复杂性,提高了学习率,并减少了培训时间。 迭代反投影算法与卷积神经网络相结合,创建了一个新的算法模型。 实验结果表明,与传统的面部错觉方法相比,该方法具有更好的性能。
2025-06-20 09:26:30 763KB 卷积网络混合算法
1
图像超分辨率技术是一种计算机视觉领域的关键技术,其目的是通过算法提升低分辨率(Low-Resolution, LR)图像的质量,使之接近或恢复到原始高分辨率(High-Resolution, HR)图像的细节和清晰度。在这个领域,基准数据集是评估和比较不同超分辨率算法性能的重要工具。"图像超分辨率基准数据集"提供了五个这样的测试集,每个都包含了x4x3x2的超分辨率任务,这意味着算法需要将图像分别放大到原来尺寸的4倍、3倍和2倍。 Set5是一个广泛使用的超分辨率数据集,它包含了高质量的高分辨率图像样本,这些样本主要来自真实世界的场景,涵盖了多种主题,如人物、风景等。Set5的数据集设计初衷是为了评测在实际应用中,超分辨率算法的性能和真实性。在处理这个数据集时,研究人员通常会先对原始HR图像进行下采样操作,生成对应的LR图像,然后用各种超分辨率算法去恢复这些LR图像,最后与原始HR图像进行对比,评估算法的重建效果。 超分辨率技术可以分为两大类:基于学习的方法和非基于学习的方法。非基于学习的方法,如插值、反卷积等,主要依赖数学运算来提高图像分辨率。而基于学习的方法,尤其是近年来随着深度学习的兴起,通过训练神经网络模型来学习图像的高分辨率特性,例如SRCNN(Super-Resolution Convolutional Neural Network)、VDSR(Very Deep Super-Resolution)和ESPCN(Efficient Sub-Pixel Convolutional Neural Network)等,它们在Set5等基准数据集上的表现通常优于传统方法。 在评估超分辨率算法时,常见的指标包括峰值信噪比(PSNR)和结构相似度指数(SSIM)。PSNR衡量了重建图像与原始图像之间的均方误差,数值越高,表示重建质量越好。SSIM则从人类视觉系统的角度考虑,评价图像的结构信息保持程度,同样值域越大,表示相似度越高。 在实际应用中,除了追求高PSNR和SSIM值,算法还需要考虑计算效率和实时性。例如,轻量级网络设计,如ESPCN,能够在保持良好性能的同时,降低计算复杂度,适应于嵌入式设备或实时系统。 "图像超分辨率基准数据集",特别是Set5,为研究者提供了一个公正的平台,用于开发和测试新的超分辨率算法。通过对这个数据集的不断挑战和优化,我们可以期待未来图像超分辨率技术在画质提升、视频处理、遥感影像分析等领域发挥更大的作用。
2025-06-15 14:06:12 2.03MB 数据集
1
配套文章:https://blog.csdn.net/qq_36584673/article/details/136861864 文件说明: benchmark_results:保存不同倍数下测试集的测试结果 data:存放数据集的文件夹,包含训练集、测试集、自己的图像/视频 epochs:保存训练过程中每个epoch的模型文件 statistics:存放训练和测试的评估指标结果 training_results:存放每一轮验证集的超分结果对比,每张图像5行3列展示 data_utils.py:数据预处理和制作数据集 demo.py:任意图像展示GT、Bicubic、SRGAN可视化对比结果 draw_evaluation.py:绘制Epoch与Loss、PSNR、SSIM关系的曲线图 loss.py:损失函数 model.py:网络结构 test_benchmark.py:生成benchmark测试集结果 test_image.py:生成任意单张图像用SRGAN超分的结果 test_video.py:生成SRGAN视频超分的结果 train.py:训练SRGAN 使用方法见文章。
2024-08-16 14:23:17 231.09MB pytorch 超分辨率 超分辨率重建 python
1
Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-06-16 00:40:57 3.16MB matlab
1
图像超分辨率重建matlab源码 超分辨率图像处理 从几幅图象中提取像素合成新的比较清晰的图像-super-resolution image processing images from pieces of pixels from the synthesis of new clearer images 文件列表(点击判断是否您需要的文件): superresolution_v_2.0 .....................\.DS_Store .....................\application .....................\...........\.DS_Store .....................\...........\applicability.m .....................\...........\c2p.m .....................\...........\Contents.m .....................\...........\create_images.m .....................\...........\estimate_motion.m .....................\...........\estimate_rotation.m .....................\...........\estimate_shift.m .....................\...........\generatePSF.m .....................\...........\generation.fig .....................\...........\generation.m .....................\...........\gpl .....................\...........\html .....................\...........\....\.DS_Store .....................\...........\....\SR_about.html .....................\...........\....\SR_documentation.html .....................\...........\interpolation.m .....................\...........\iteratedbackprojection.m .....................\...........\keren.m .....................\...........\keren_shift.m .....................\...........\logo_epfl_small.tif .....................\...........\logo_warning.tif .....................\...........\lowpass.m .....................\...........\lucchese.m .....................\...........\marcel.m .....................\...........\marcel_shift.m .....................\...........\n_conv.m .....................\...........\n_convolution.m .....................\...........\papoulisgerchberg.m .....................\...........\pocs.m .....................\...........\robustnorm2.m .....................\...........\robustSR.m .....................\...........\shift.m .....................\...........\SR_about.m .....................\...........\SR_documentation.m .....................\...........\superresolution.fig .....................\...........\superresolution.m
2024-04-28 12:33:48 123KB
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-04-09 10:48:36 2.24MB matlab
1
win32位编译的 快速超分辨率重建(fscrcnn)程序,非源代码
2024-03-02 15:15:07 144KB 超分辨率
1
纯 C++ 实现的超分辨率重建, 你不用安装任何编程语言和神经网络库,马上使用超分辨率 非源代码,源代码都在博客的文章上了
2024-02-15 19:59:39 174KB 纯C++ 超分辨率重建
1
纯 C++ 实现的超分辨率重建, 你不用安装任何编程语言和神经网络库,马上使用超分辨率 非源代码,源代码都在博客的文章上了
2024-02-15 19:54:17 2.36MB 超分辨率
1
1.支持任意大小的图片输入 2.输入模糊的图片,输出清晰的图片 3.采用pytorch框架实现,带有预训练权重,压缩包中带有完整的测试样例和代码 4.开箱即用,只需要两行代码即可使用
2023-11-11 12:39:53 309.18MB 深度学习 超分辨率 superresolution python
1