这个数据集是一个典型的欺诈检测数据集,适用于各类数据分析、机器学习和数据挖掘任务,尤其是用来训练和评估模型在金融、电子商务等领域中识别欺诈行为的能力。该数据集包含了大量的交易记录,每一条记录都包含了关于交易的不同特征,例如交易金额、时间、客户身份、购买商品类型等信息。通过对这些数据的分析,可以帮助研究人员和数据科学家训练分类模型,以区分正常交易与欺诈交易,从而提高系统在真实环境中的准确性和安全性。 在实践中,欺诈检测是金融服务领域中至关重要的一项工作,尤其是信用卡支付、在线银行交易以及电子商务平台等,都可能面临欺诈风险。通过应用该数据集进行模型训练和调优,研究人员可以学习如何使用各种机器学习算法,如逻辑回归、决策树、随机森林、支持向量机(SVM)等,来提高检测系统的准确率和召回率。此外,该数据集也常常用来进行模型的性能评估,包括精度、召回率、F1值、AUC等指标,这些评估指标能够反映模型在检测欺诈交易时的实际表现。 总的来说,这个欺诈检测数据集是一个非常有价值的资源,能够帮助从事数据科学、机器学习、人工智能等领域的研究人员深入理解如何构建高效的欺诈检测系统,同时也为各类实际应用提供
2025-06-21 17:38:52 32.89MB 机器学习
1
Kaggle 贷款批准预测的数据集是一个典型的机器学习问题,旨在通过分析客户的个人和财务信息,预测他们是否能够获得贷款批准。该数据集的一个显著特点是它具有极度不平衡的正负样本分布,即大部分申请贷款的用户都未获得批准(负类样本),而只有少部分用户获得批准(正类样本)。这种样本不平衡的情况在实际的商业和金融领域中是非常常见的,通常会给模型的训练和评估带来很大的挑战。 对于新手和初学者而言,处理这类不平衡数据集是一个非常好的练习机会,因为它可以帮助你掌握如何应对数据集中的正负样本不均衡问题。 初学者不仅可以提升数据预处理、特征工程、模型选择和调优的能力,还能更好地理解和应用机器学习中处理不平衡数据的技巧和方法。此外,这类任务通常涉及到实际业务问题,帮助学习者将理论与实践结合,提升解决现实问题的能力。 总之,Kaggle 贷款批准预测的数据集是一个非常适合新手练习和学习的数据集,通过对不平衡数据的处理,学习者可以掌握更多数据分析和机器学习的核心技能,同时为今后更复杂的项目打下坚实的基础。
2025-06-21 17:06:56 1.45MB 机器学习
1
改训练集属于负样本,用于人脸检测时;
2023-04-26 02:05:11 105.8MB opencv人脸库
1
使用1754个负样本和1163个车辆正样本制作的用于车辆识别的XML文件。这个XML文件进一步可以采用OPENCV用于图像中车辆的识别。 由于负样本太大,不便于上传,在此只传正样本和最终的XML文件。希望对您的开发或研究过程有所帮助。
2023-03-17 15:39:03 2.58MB 车辆 正样本 负样本
1
中文语义情绪识别训练样本 购物评论训练样本 可用于自然语义识别模型训练和预测 自带2万余条带有正负情绪倾向的中文评论
2023-02-08 16:19:56 2.85MB 机器学习 NLP 训练样本
1
抽烟检测一共2500多张图片含负样本,训练测试比例为8:2。进行了数据划分,数据增强,数据清洗,负样本添加,可以直接下载使用。准确率可达0.98+
2022-09-28 12:05:38 268.82MB 抽烟检测 深度学习 人工智能
1
正样本一万八千张,负样本一万多张
2022-07-06 15:43:44 45.7MB 人脸识别 样本
1
机器学习负样本一共有很多张,大小64*64,为路面信息负样本
2022-04-05 15:07:54 65.38MB 机器学习
1
人脸识别正负样本集,负样本2500多,且为处理后灰度图;正样本1000多张,且为归一化后的图片;同时负样本也是适应于车辆识别,车牌识别,行人检测等
2022-04-03 18:31:18 58B 人工智能 机器学习
1
人头训练正负样本数据集..用来训练人头识别模型的正负样本数据集
2022-03-27 14:16:45 21.42MB 训练 正负样本
1