在当今科学技术领域,偶氮类聚合物因其在非线性光学领域的特殊应用而备受关注。这篇论文详细描述了使用旋转甩膜法制备主客体掺杂型偶氮类聚合物薄膜的过程,并对薄膜全光极化特性进行了深入研究。以下是对文中知识点的详细说明:
旋转甩膜法是一种常见的薄膜制备技术。通过将含有聚合物及其它活性染料的溶液滴加到旋转的基底上,溶剂迅速蒸发,溶液在基底上形成均匀的薄膜。这种方法能够控制薄膜的厚度以及表面形态,是科研工作中常用的薄膜制备手段。
偶氮染料是一种具有偶氮键(-N=N-)的有机化合物,由于其结构特征,偶氮染料在光照或电场的作用下能够发生顺反异构现象,从而改变材料的物理性质,使其在光存储、光学开关、非线性光学材料等领域有着重要的应用价值。
在论文中,被选作光学活性生色团的染料包括分散红1(DR1)、分散橙25(DO25)、分散黄7(DY7)和分散红54(DR54),这些染料被掺杂到聚合物基体中。基体材料选择了聚甲基丙烯酸甲酯(PMMA)和聚碳酸酯(PC),这是因为这两种聚合物具有良好的透明性和热稳定性,适合用于非线性光学材料的制备。
论文中提到的工艺条件对偶氮类聚合物薄膜的全光极化特性有显著影响,特别是热处理、染料浓度、吸收光谱和结构等因素。这些条件决定了薄膜中染料分子的排列状态,从而影响到材料的非线性光学响应。例如,实验发现染料浓度较高的薄膜在光照作用下能够产生更强的二阶非线性效应,这与染料分子的空间排布密度有关。
为了分析样品的特性,作者利用了扫描电镜(SEM)、X射线衍射(XRD)、差示扫描量热计(DSC)、红外光谱法(IR)、紫外-可见吸收光谱以及显微硬度仪等技术。这些分析方法能够从不同的角度对薄膜的表面形态、晶体结构、玻璃化转变温度、化学结构、光学吸收特性以及机械硬度等方面进行研究,从而全面评估材料的性能。
全光极化是指在光照下对材料进行极化的过程,通过这种处理,可以在聚合物薄膜中产生稳定的二阶非线性光学效应。这种效应通常与材料的二阶极化率有关,是一种重要的光学特性。在本研究中,作者发现通过普通热处理后的聚合物薄膜,在避光条件下保存时,能够产生明显的全光极化效果。这表明,制备工艺参数对偶氮类聚合物薄膜的全光极化特性有着直接影响。
本篇论文详细介绍了如何利用旋转甩膜法制备主客体掺杂型偶氮类聚合物薄膜,并且研究了这些薄膜在全光极化下的二阶非线性效应。这不仅丰富了非线性光学材料的研究内容,也为今后在相关领域应用提供了新的实验依据和理论指导。
2025-01-11 15:35:10
565KB
首发论文
1