在当前快速发展的计算机视觉领域中,多目标跟踪(Multi-Object Tracking,简称MOT)和行人重识别(Re-identification,简称ReID)是两个重要的研究方向。MOT关注于视频监控场景中对多个目标的实时跟踪问题,而ReID则致力于解决跨摄像头场景下行人身份的识别问题。本项目基于深度学习框架和算法,实现了视频中行人MOT和ReID特征提取的完整流程。 YOLOv5是一个高效且先进的目标检测算法,它基于卷积神经网络(CNN),能够在视频流中快速准确地识别和定位多个目标。YOLOv5以其出色的性能在实时目标检测任务中得到广泛应用,其速度快、准确率高、易于部署的特点使其成为构建复杂视觉系统的基础组件。 Deepsort是一个强大的多目标跟踪算法,它结合了深度学习技术来改善传统跟踪算法的性能。通过将检测到的目标和已有的跟踪目标进行关联,Deepsort能够有效地处理遮挡、目标交叉等复杂场景,保证了跟踪的连续性和准确性。 Fastreid是针对ReID任务而设计的深度学习算法,它专注于从图像中提取行人的特征,并将这些特征用于识别特定的行人个体。Fastreid在特征提取和特征匹配上具有优越的性能,特别是在大规模和复杂的监控环境中,能够实现行人的跨摄像头跟踪和识别。 本项目将Yolov5、Deepsort和Fastreid三种算法相结合,通过重构源码,实现了视频中行人的检测、跟踪和身份识别的一体化处理。具体来说,首先利用YOLOv5算法进行实时视频帧中的行人检测,然后通过Deepsort算法实现对检测到的行人目标进行稳定跟踪,最后利用Fastreid算法提取行人的特征,并进行跨摄像头的ReID处理。 项目中包含的“mot-main”文件,很有可能是包含核心算法和接口的主文件夹或主程序入口。在这个文件夹内,开发者可以找到用于行人检测、跟踪和ReID的关键代码模块,以及调用这些模块的接口程序。这些代码和接口为研究人员和工程师提供了便于使用和集成的工具,从而能够快速搭建起视频行人MOT和ReID的完整系统。 此外,项目可能还包括数据预处理、模型训练、性能评估等相关模块。这些模块的集成,有助于用户自定义训练数据集,优化模型参数,以及评估跟踪和识别系统的性能。整个系统的设计兼顾了性能与易用性,适合于安防监控、智能交通、公共安全等需要实时行人跟踪和身份识别的场景。 在实际应用中,该项目可以显著提高行人跟踪和识别的准确性和效率,为用户提供强大的技术支持。例如,在城市监控系统中,可以实时地跟踪并识别视频中的特定个体,从而在紧急情况或安全事件发生时,提供及时有效的信息支持。同时,该技术在零售分析、人流量统计等场景中也具有潜在的应用价值。 基于Yolov5-Deepsort-Fastreid源码重构的视频行人MOT和行人ReID特征提取代码、接口,展现了人工智能在视频分析领域的先进技术和应用潜力,为相关领域的研究和开发提供了强有力的工具和平台。
2025-09-12 23:53:37 37KB
1
Human parsing has been extensively studied recently (Yamaguchi et al. 2012; Xia et al. 2017) due to its wide applications in many important scenarios. Mainstream fashion parsing models (i.e., parsers) focus on parsing the high-resolution and clean images. However, directly applying the parsers trained on benchmarks of high-quality samples to a particular application scenario in the wild, e.g., a canteen, airport or workplace, often gives non-satisfactory performance due to domain shift. In this paper, we explore a new and challenging cross-domain human parsing problem: taking the benchmark dataset with extensive pixel-wise labeling as the source domain, how to obtain a satisfactory parser on a new target domain without requiring any additional manual labeling? To this end, we propose a novel and efficient crossdomain human parsing model to bridge the cross-domain differences in terms of visual appearance and environment conditions and fully exploit commonalities across domains. Our proposed model explicitly learns a feature compensation network, which is specialized for mitigating the cross-domain differences. A discriminative feature adversarial network is introduced to supervise the feature compensation to effectively reduces the discrepancy between feature distributions of two domains. Besides, our proposed model also introduces a structured label adversarial network to guide the parsing results of the target domain to follow the high-order relationships of the structured labels shared across domains. The proposed framework is end-to-end trainable, practical and scalable in real applications. Extensive experiments are conducted where LIP dataset is the source domain and 4 different datasets including surveillance videos, movies and runway shows without any annotations, are evaluated as target domains. The results consistently confirm data efficiency and performance advantages of the proposed method for the challenging cross-domain human parsing problem. Abstract—This paper presents a robust Joint Discriminative appearance model based Tracking method using online random forests and mid-level feature (superpixels). To achieve superpixel- wise discriminative ability, we propose a joint appearance model that consists of two random forest based models, i.e., the Background-Target discriminative Model (BTM) and Distractor- Target discriminative Model (DTM). More specifically, the BTM effectively learns discriminative information between the target object and background. In contrast, the DTM is used to suppress distracting superpixels which significantly improves the tracker’s robustness and alleviates the drifting problem. A novel online random forest regression algorithm is proposed to build the two models. The BTM and DTM are linearly combined into a joint model to compute a confidence map. Tracking results are estimated using the confidence map, where the position and scale of the target are estimated orderly. Furthermore, we design a model updating strategy to adapt the appearance changes over time by discarding degraded trees of the BTM and DTM and initializing new trees as replacements. We test the proposed tracking method on two large tracking benchmarks, the CVPR2013 tracking benchmark and VOT2014 tracking challenge. Experimental results show that the tracker runs at real-time speed and achieves favorable tracking performance compared with the state-of-the-art methods. The results also sug- gest that the DTM improves tracking performance significantly and plays an important role in robust tracking.
2022-03-26 14:11:37 26.39MB 人脸识别 行人Reid
1