本文深入探讨了AC/DC与DC/AC背靠背系统的原理和应用,特别是在电力质量调节、并网、充放电控制以及双向能量传输等场景中的重要性。文章详细介绍了AC/DC和DC/AC转换器的工作原理,背靠背系统的定义及其在电动汽车充电设施、可再生能源并网和工业电机驱动系统中的应用。此外,还分析了整流与斩波原理、PWM技术在逆变器中的应用以及控制器在电力电子转换中的作用。通过使用Simulink模型模拟和分析系统性能,本文为电力电子技术的研究和应用提供了有价值的参考。 AC/DC转换器是电力电子系统中的一种设备,它负责将交流电(AC)转换为直流电(DC)。这种转换器常用于各种电子设备的电源适配器中,也广泛应用于电力系统中的直流输电。而DC/AC逆变器则将直流电转换为交流电,它在太阳能光伏系统、不间断电源(UPS)以及电动汽车等领域中扮演着重要角色。背靠背系统是一种特殊的电力电子装置,它由AC/DC和DC/AC两部分构成,可以实现能量的双向流动,广泛应用于电力质量调节、并网和双向能量传输等场景。 文章首先深入剖析了AC/DC与DC/AC转换器的基本工作原理。AC/DC转换器通常包含整流环节,该环节可以是半波整流或全波整流,目的是改变交流电的极性并进行电压转换。DC/AC逆变器则需要逆变环节,通常涉及调制技术,比如脉宽调制(PWM)技术,以控制输出交流电的频率和幅值。 接着文章详细分析了背靠背系统的定义,以及其在不同领域中的应用。在电动汽车充电设施中,背靠背系统能够有效管理电网与电动车之间的能量传输,为快速充电提供了技术支撑。在可再生能源并网应用中,背靠背系统通过转换电力的频率,实现了风能、太阳能等新能源与传统电网的兼容。而在工业电机驱动系统中,背靠背系统则为电机提供了灵活的运行速度控制,同时提高了能量的使用效率。 文章进一步探讨了PWM技术在逆变器中的应用,以及控制器在电力电子转换中的作用。PWM技术通过调整开关器件的开关时间,控制逆变器输出电压波形的脉冲宽度,从而实现高质量的交流电输出。控制器在系统中的作用是调节和控制整个电力电子设备的运行,保证转换过程的稳定性和效率。 为了验证理论分析,文章使用Simulink模型对系统性能进行模拟和分析,展示了背靠背系统在实际应用中的表现。这为电力电子技术的研究者提供了实验和验证的参考。 在电力质量调节方面,背靠背系统能够迅速响应电网波动,稳定电压和频率,确保供电的连续性和稳定性。在并网技术方面,背靠背系统可以实现新能源电力与电网的无琏链接,提高电力系统的灵活性和效率。在充放电控制方面,背靠背系统可以优化电池的充放电过程,延长电池寿命,同时确保能量的高效利用。在双向能量传输方面,背靠背系统允许电力在两个方向流动,增加了电网的调节能力,尤其在分布式发电系统中具有重要意义。 电力电子技术是现代电力系统中不可或缺的一部分,AC/DC与DC/AC背靠背系统作为其中的关键技术之一,不仅在技术理论上具有重要的研究价值,而且在实际应用中展现出了巨大的潜力和应用前景。通过深入分析背靠背系统的工作原理和应用案例,本文为电力电子技术的研究和应用提供了深入的见解和实用的参考。
2026-01-11 19:04:37 14KB 电力电子技术
1
背靠背变换器系统及其Simulink仿真分析方法。系统由机侧变换器和网侧变换器组成,分别采用PQ控制和Udc-Q控制策略,额定线电压为690V,额定功率为2MW。文章探讨了标幺值控制参数的使用及其优势,解释了SPWM调制技术的工作原理,并展示了udc参考值突变时的电压波形。通过Simulink仿真,可以直观地分析和优化系统性能。 适合人群:从事电力电子系统研究和开发的技术人员,尤其是对背靠背变换器感兴趣的工程师和研究人员。 使用场景及目标:①理解和掌握背靠背变换器的工作原理和控制策略;②利用Simulink进行电力电子系统的建模和仿真;③优化系统性能,提高电能质量和稳定性。 其他说明:本文所用模型基于Simulink r2022b版本,在实际应用中需要注意版本差异和模型准确性。
2026-01-08 23:59:48 700KB 电力电子 Simulink
1
针对鼠笼式异步电机四象限运行控制问题,建立了网侧变流器和机侧变流器的数学模型,给出了网侧变流器和机侧变流器的控制方法,并分别求取了网侧和机侧控制器,网侧采用电压外环电流内环双闭环控制,机侧采用SVPWM调制的直接转矩控制。系统实现了直流母线电压稳定,网侧功率因数为1,能量双向流动,电机四象限运行及电机转速跟踪快速且准确等控制目标。
2024-06-01 02:28:10 921KB 背靠背变流器 SVM-DTC
1
Matlab Simulink#直驱永磁风电机组并网仿真模型 基于永磁直驱式风机并网仿真模型。 采用背靠背双PWM变流器,先整流,再逆变。 不仅实现电机侧的有功、无功功率的解耦控制和转速调节,而且能实现直流侧电压控制并稳定直流电压和网侧变换器有功、无功功率的解耦控制。 风速控制可以有线性变风速,或者恒定风速运行,对风力机进行建模仿真。 机侧变流器采用转速外环,电流内环的双闭环控制,实现无静差跟踪。 后级并网逆变器采用母线电压外环,并网电流内环控制,实现有功并网。 并网电流畸变率在2%左右。 附图仅部分波形图,可根据自己需求出图。 可用于自用仿真学习,附带对应的详细说明及控制策略实现的paper,便于理解学习。 模型完整无错,可塑性高,可根据自己的需求进行修改使用。 包含仿真文件和说明 根据你提供的内容,我重新表述如下: 这是一个基于Matlab/Simulink的仿真模型,用于直驱永磁风电机组并网。模型采用背靠背双PWM变流器,先进行整流,再进行逆变。通过该模型,不仅可以实现电机侧有功和无功功率的解耦控制、转速调节,还能实现直流侧电压的控制,稳定直流电压,并实现网侧变换器有功和无功
2024-01-10 15:01:50 1.15MB matlab
1
三相背靠背交流直流交流simulink仿真模型,采用PWM调制,电压闭环控制
1
图 5.12 突发写传输 虽然第一个传输可以零等待状态完成,但之后到外设总线的传输将为每个传输的执行要 求一个等待状态。 APB 桥需要包含两个地址寄存器,以便 APB 桥可以采样下一次传输的地址而同时当前 传输继续在外设总线上(执行)。 5.6.3 背靠背传输 图 5.13表示了许多的背靠背传输。传输序列以一个写操作开始,之后跟随着一个读操 作,然后是一个写操作,之后是一个读操作。 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 HADDR HWRITE HWDATA HREADY PADDR PWRITE PSELx PENABLE PWDATA 地址1 地址2 地址3 地址4 数据1 HRDATA 数据 4数据2 数据3 地址1 地址2 地址3 地址4 PRDATA 数据4数据2 数据1 数据3 图 5.13 背靠背传输 图 5.13表示了如果一个读传输紧跟在一个写传输之后,那么需要 3 个等待状态来完成 这次读操作。事实上,在基于处理器的设计中一个写传输后跟随着一个读传输并不经常发生 因为处理器将在两个传输之间执行指令预取并且指令存储器不太可能挂接在APB总线上。 5.6.4 三态数据总线的实现 Translated by kongsuo 110
2022-09-16 11:15:19 1.73MB AMBA规范
1
守护进程,通过守护一个进程进行对该进程的监控,当这个进程,异常停止,守护进程则启动这个进程。同时守护进程有防杀功能,当被恶意程序杀死后,会被另一进程启动,这两个进程互相监控.
2022-05-23 19:59:37 6KB 守护进程 c/c++
1
为了研究灵宝背靠背换流站在交流系统发生故障时的换相失败过程,利用电磁暂态仿真软件PSCAD/EMTDC对灵宝背靠背高压直流输电系统进行了建模,并在此基础上对高压直流输电系统中常见的故障进行了仿真分析,其中包括逆变侧交流系统发生三相故障和单相故障的情况。仿真结果表明,在PSCAD/EMTDC环境下建立的模型能够比较准确地描述在暂态过程中背靠背直流输电系统的动态特性,可以为现场运行以及故障分析提供参考。在系统中加入故障检测控制环节,根据电压和电流的变化,适时增大提前触发角,可以有效地预防换相失败。
2021-11-17 18:57:52 730KB 背靠背 PSCAD/EMTDC 仿真
1
行业-电子政务-一种背靠背双屏显示电子书包.zip
2021-08-22 18:03:25 504KB
本文建议使用背靠背转换器作为公用电网和微电网之间的互连。 为了证明这个提议的合理性,解释了两种操作模式以及背靠背转换器相对于传统转换器的优势静态开关显示。 在模式-I 中,互连转换器将预先指定数量的有功和无功功率注入到微电网。 该模式被标识为 PQ 控制模式。 模式 2 是电压控制模式,其中背靠背转换器控制微电网的电压并维持电力尽管是非线性的,但从公用电网汲取的电流质量和微电网中的不平衡负载。
2021-07-20 21:39:40 41KB matlab
1