1. 二维卷积实验 手写二维卷积的实现,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示)(只用循环几轮即可)。 使用torch.nn实现二维卷积,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示)。 不同超参数的对比分析(包括卷积层数、卷积核大小、batchsize、lr等)选其中至少1-2个进行分析。 2. 空洞卷积实验 使用torch.nn实现空洞卷积,要求dilation满足HDC条件(如1,2,5)且要堆叠多层并在至少一个数据集上进行实验,从训练时间、预测精度、Loss 变化等角度分析实验结果(最好使用图表展示)。 将空洞卷积模型的实验结果与卷积模型的结果进行分析比对,训练时间、预测精度、Loss变化等角度分析。 不同超参数的对比分析(包括卷积层数、卷积核大小、不同dilation的选择,batchsize、lr等)选其中至少1-2个进行分析(选做)。 3. 残差网络实验 实现给定结构的残差网络,在至少一个数据集上进行实验,从训练时间、预测精度、L
2024-08-21 10:23:09 2.31MB 神经网络
1
二维卷积实验(平台课与专业课要求相同) 1.手写二维卷积的实现,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 2.使用torch.nn实现二维卷积,并在至少一个数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 3.不同超参数的对比分析(包括卷积层数、卷积核大小、batchsize、lr等)选其中至少1-2个进行分析 4.使用PyTorch实现经典模型AlexNet并在至少一个数据集进行试验分析 (平台课同学选做,专业课同学必做)(无GPU环境则至少实现模型) 5.使用实验2中的前馈神经网络模型来进行实验,并将实验结果与卷积模型结果进行对比分析(选作) 空洞卷积实验(专业课) 1.使用torch.nn实现空洞卷积,要求dilation满足HDC条件(如1,2,5)且要堆叠多层并在至少一个数据集上进行实验,从训练时间、预测精度、Loss 2.变化等角度分析实验结果(最好使用图表展示)将空洞卷积模型的实验结果与卷积模型的结果进行分析比对...... 残差网络实验(专业课) 1.实现给定 2.
2024-08-03 21:20:52 750KB 交通物流 pytorch pytorch 深度学习
1
为了保证水下三维无线传感器网络对监测区域的高覆盖率,并减少网络中节点数量以降低组网成本,选用体心立方格结构进行传感器节点的部署。为了将节点收集到的信息高效地传递给网络使用者,提出了一种体心立方格部署下的网络路由协议。该协议基于节点位置与能量信息计算对数据包的转发概率,在保证数据包高投递率的同时减少冲突的发生;利用后续转发节点的反馈信息检测网络空洞的出现,并通过控制发送功率来改变节点的通信范围以穿越空洞。仿真结果表明,在保证网络连通性及数据包投递率的同时,该协议能够提高网络能量利用效率、平衡节点的能量消耗。
1