电动汽车定速巡航控制器 基于整车纵向动力学作为仿真模型 输入为目标车速,输出为驱动力矩、实际车速,包含PID模块 控制精度在0.2之内,定速效果非常好 自主开发,详细讲解,包含 资料内含.slx文件、lunwen介绍 电动汽车定速巡航控制器是一种先进的电子装置,主要用于维持电动汽车以某一设定的速度稳定行驶,这对于提高驾驶的便利性和安全性具有重要意义。这种控制器通常基于整车纵向动力学模型来进行工作,它能够根据驾驶员设定的目标车速,通过精确控制输出的驱动力矩来调节车辆的实际行驶速度。在这个过程中,PID(比例-积分-微分)控制模块发挥着核心作用,通过实时调整驱动力矩来确保车辆速度的稳定,同时控制精度非常高,一般可以控制在0.2%以内,这意味着车辆的速度可以非常精确地维持在设定值附近。 从文件列表中可以看出,相关资料包含了技术分析文档、控制器的工作原理说明、以及一些示例图片和仿真模型文件。这些资料的详尽程度表明开发者在自主开发的过程中进行了深入的研究和细致的实验验证。通过这些文件,我们可以看到定速巡航控制器不仅仅是一个简单的装置,它涉及到复杂的算法设计和动力学分析,这些都是确保其稳定性和精度的关键因素。 此外,文档中提到的“slx”文件和“lunwen介绍”可能分别指代仿真模型的文件格式和论文或研究报告的介绍。这些文件对于理解电动汽车定速巡航控制器的内部工作原理、实现方法和实际应用具有重要的参考价值。尤其对于那些需要进行控制器性能评估、优化或者进一步开发的工程师和技术人员来说,这些资料是宝贵的资源。 电动汽车定速巡航控制器不仅仅是一个简单的设备,它是一个集成了精确控制算法和复杂动力学模型的高科技产品。通过对这类控制器的研发和应用,可以显著提升电动汽车的驾驶体验,降低驾驶者的疲劳度,同时也能为节能减排做出贡献。
2025-12-25 17:35:00 93KB
1
由于主动避撞系统的验证中需要有动力学模型来支撑,所以要搭建无人车 纵向动力学模型。无人车纵向动力总成包括发动机、液力偶合器、自动变速器和 车辆质量模型等。为了验证所本文所搭建的动力学模型的合理性,在 CarSim 中同 样建立了整车模型,并在与 Simulink 中搭建的纵向动力学模型进行对比,证明所 建动力学模型的完整性与准确性。 与传统的模糊系统不同,DFS 将模糊变量分解为 N 层,并除去了两个边界 模糊集。每一层的传统模糊变量由一个对应的模糊集及其补集构成,并且每一层 对应于原模糊划分中的一个模糊集。由于采用 DFS 所构建的基于专家经验的模糊 规则库的规则数过多,所以采用简易分解模糊系统(SDFS)。对于 SDFS,相比 DFS 来说只需要考虑来自模糊变量的同一排序层的模糊集,模糊规则数相对较少。 针对无人车的主动避撞系统,避撞逻辑的模型采用安全距离模型。将前后 车的状态信息输入到控制器中,按照设计好的计算方法得到相应的危险阈值,该 阈值是表示当前车况危险程度的量,无人车可通过阈值法判别紧急危险状况,以 及是否触发车辆自主制动措施。一旦触发车辆自主的制动,系统将给出制动的期 望减速度,无人车将以期望加速度为目标进行制动。采用控制目标设计层、扭矩 输出层的分层控制策略。在目标设计层中,将期望纵向加速度与实际值作比较得 到相应的误差;在扭矩输出层,误差通过分解模糊 PID 控制器计算出期望加速度所 需要的力矩。最后,通过仿真验证所提出的控制方法的有效性。
根据汽车循环工况计算负载转矩响应
2021-04-02 22:07:05 30KB 循环工况 转矩 纵向动力学
1
车辆系统动力学 - 第二篇纵向动力学.ppt
1