许多研究表明,我们可以通过猪的日常行为来推断其健康状态,所以如何有效观察「猪」的行为显得极其重要,这可以保证我们在「必要时」采取迅速的干预行动,以保证猪的健康状态。 长时间观察动物的行为很难人工完成,因此通常情况下采取的方案是使用基于传感器的自动化系统。 自动识别系统的使用可以大大简化对猪的行为的研究,尤其是基于计算机视觉的系统。其优势在于,它们可以对目标进行有效的状态评估,同时也不会影响动物的正常行为。近年来,这一方向的研究已经引入了深度学习的方法,并表现出不错的效果。传统意义上的「目标」和「关键点」检测器已被用于检测单个动物。虽然效果良好,但是边界框以及稀疏关键点无法追踪动物的轮廓,从而会导致丢失许多有效信息。
1