在现代自动化控制领域,PID(比例-积分-微分)控制器因其简单易用和稳定性而广泛应用。然而,传统的PID控制器存在参数整定困难、适应性不足等问题,这限制了其在复杂系统中的性能。为了解决这些问题,研究人员将神经网络与PID控制器相结合,并引入了优化算法,如粒子群优化(PSO,Particle Swarm Optimization),形成了神经网络PID控制策略。 粒子群优化是一种仿生优化算法,源自对鸟群和鱼群集体行为的研究。它通过模拟群体中的个体在搜索空间中移动和优化,寻找最优解。在神经网络PID控制中,PSO用于调整神经网络的权重和阈值,从而实现PID参数的自适应优化。 神经网络,特别是前馈型的多层感知器(MLP,Multi-Layer Perceptron),被用来作为非线性映射工具,它可以学习并逼近复杂的系统动态。在神经网络PID控制中,神经网络负责预测系统的未来输出,以此来改善PID控制器的决策。相比于固定参数的PID,神经网络可以根据系统的实时状态动态调整其参数,提高控制性能。 具体来说,神经网络PID控制系统的工作流程如下: 1. 初始化:设定粒子群的位置和速度,以及神经网络的初始参数。 2. 输入处理:输入信号经过神经网络进行预处理,形成神经网络的输入向量。 3. 粒子群优化:利用PSO算法更新神经网络的权重和阈值,即PID参数。每个粒子代表一组PID参数,其适应度函数通常是系统的性能指标,如稳态误差、超调量等。 4. 输出计算:根据优化后的神经网络参数,计算PID控制器的输出信号。 5. 系统响应:将PID控制器的输出应用于系统,观察系统响应。 6. 反馈循环:根据系统响应调整粒子的位置,然后返回步骤2,直至满足停止条件。 这种结合了PSO和神经网络的PID控制策略有以下优点: - 自适应性强:能够自动适应系统的变化,提高控制性能。 - 鲁棒性好:对系统模型的不确定性及外部扰动具有较好的抑制能力。 - 调参简便:通过PSO优化,无需人工反复调试PID参数。 - 实时性能:能够在短时间内完成参数优化,满足实时控制需求。 SPO_BPNN_PID-master这个文件名可能代表了一个关于“基于粒子群优化的神经网络PID控制”的开源项目或代码库。在这个项目中,开发者可能提供了实现这种控制策略的代码,包括神经网络的构建、PSO算法的实现以及PID参数的优化过程。使用者可以通过研究和修改这些代码,应用到自己的控制系统中,或者进一步研究优化方法以提升控制效果。 基于粒子群优化的神经网络PID控制是自动化控制领域的创新应用,它将先进的优化算法与智能控制理论相结合,为解决传统PID控制器的局限性提供了一种有效途径。通过这样的方法,我们可以设计出更加智能化、自适应的控制系统,以应对日益复杂的工程挑战。
2025-01-21 22:42:14 6KB 神经网络
1
神经网咯自整定pid 控制器,基于bp神经网络的simulink模型
1
利用BP神经网络优化PID控制器参数,实现在线整定,达到最优化。
1
电力电子行业充电机使用神经网络PID和模糊PID和PID三种双闭环控制,模型可直接运行,Ts=1e-6,适合本硕毕业设计使用
1
RBF神经网络模型,sinmulink模型仿真,画图分析程序,pid控制结构
2024-05-13 20:56:12 7KB 神经pid 神经网络控制
PID控制器是过程控制中应用最为广泛的控制器,而传统PID控制器参数整定难以达到最优状态,同时,存在控制结果超调量过大、调节时间偏长等缺点,因此,将变异粒子群优化算法(Mutation Particle Swarm Optimization,MPSO)运用于BP-PID的参数整定过程中,设计了一种高效、稳定的自适应控制器。考虑MPSO的变异机制,以种群适应度方差与种群最优适应度值为标准,进行种群变异操作,可以克服早熟,提高收敛精度和PSO的全局搜索能力,使MPSO优化的BP神经网络整定的PID控制器能以更快的速度、更高的精度完成过程控制操作。在实验中,通过比较BP-PID、PSO-BP-PID以及MPSO-BP-PID三控制器仿真结果,证明了所提MPSO算法的有效性和所设计MPSO-BP-PID控制器的优越性。
2024-04-19 09:17:45 670KB
1
基于神经网络的自适应PID控制器 通过将RBF(BP)神经网络和PID控制器相结合,建立了神经网络PID控制器,采用传递函数进行系统建模,通过自动调整PID参数,实现了对方波信号的跟踪。 程序有注释
2024-04-14 13:38:32 59KB 神经网络
1
基于模糊神经网络PID控制器的matlab仿真+提供代码操作视频 运行注意事项: 使用matlab2021a或者更高版本测试,运行里面的Runme.m文件,不要直接运行子函数文件。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。 具体可观看提供的操作录像视频跟着操作。
本程序针对多输入多输出的耦合网络,设计了PID神经元网络,达到了很好的控制效果。
本文针对大功率船舶柴油发电机组具有的不确定性、时变性、非线性和大纯滞后等特性,借鉴RBF神经网络与模糊控制各自的优势,将模糊控制与RBF神经网络进行有机融合,设计了基于模糊RBF神经网络的船舶柴油发电机组转速PID控制器,并对船舶柴油发电机组转速控制系统分别在正常工况和异常工况下的动态过程进行仿真与分析。通过与常规PID控制、RBF神经网络PID控制和模糊PID控制三种方法下的仿真效果进行比较,验证了本文提出的方法具有更好的稳定性和抗干扰能力。
1