摘要:本文提出了一种基于小波多层分解和BP神经网络相结合的模拟电路故障诊断方法。该方法利用了多层小波分解优异的时频特性来提取故障特征参数,进行能量特征提取、归一化,并结合BP网络强大的非线性分类能力和快速的收敛特性构造了一种既能用于诊断单故障,又能诊断多故障的模型。   本文以ITC'97标准电路中的CTSV滤波电路为诊断实例进行了仿真实验仿真,结果表明该方法比传统BP网络方法的学习收敛速度快得多。   0 引言   客观世界信号的本质决定了模拟电路的普遍性和不可替代性。模拟电路由于故障模型复杂、元件参数的容差、非线性、噪声以及大规模集成化等现象使电路故障信息表现为多特征、高噪声、非线性
1